 MACROBUTTON NoMacro [Click here and type chapter title)]

Federal XML Naming and Design Rules and Guidelines
Table of Contents

1-71
Introduction

1-71.1
Purpose

1-71.2
Scope

1-81.3
Audiences

1-91.4
Terminology and Notation

1-121.5
Conformance to PL 104-113 and OMB A119

1-141.5.1
W3C Recommendations

1-161.6
Guiding Principles

1-161.6.1
General Guiding Principles

1-171.6.2
Design For Extensibility

1-181.6.3
Data versus Document Centric XML

1-191.6.4
Code Generation

1-191.7
Document Organization

2-12
Information Analysis

2-12.1
Defining Data

2-22.2
Relationships Between Data Elements

2-32.3
Transforming Data into XML

3-13
General XML Constructs

3-13.1
Overall XML Schema Structure

3-33.1.1
Root Element

3-43.2
Constraints

3-43.2.1
Naming Constraints

3-43.2.2
Modeling Constraints

3-63.3
Reusability Scheme

3-63.4
Namespace Scheme

3-73.4.1
Declaring Namespaces

3-93.4.2
Namespace Uniform Resource Indicators

Error! Bookmark not defined.3.4.3
Persistence

3-113.5
Versioning Scheme

3-123.5.1
Draft XML Schema

3-133.5.2
Standard XML Schema

3-133.5.3
Minor Version Changes

3-143.5.4
Versioning Numbering Scheme

3-143.5.5
Versioning Import Requirements

3-143.6
Modularity

3-173.6.1
Leveraging VCS Datatypes

3-183.6.2
XML Schema Modules

3-203.6.3
Federal External XML Schema Modules

3-223.6.4
Department and Agency Modularity Options

3-253.6.5
Modularity and Namespaces

3-273.7
Documentation

3-273.7.1
Annotation

3-273.7.2
Embedded Documentation

3-283.7.3
Management Information

3-333.7.4
Content Information

Error! Bookmark not defined.3.7.5
XML Schema Guides

4-14
Naming XML Constructs

4-14.1
General Naming Rules

4-14.1.1
Syntax Neutral Naming Rules

4-74.1.2
XML Naming Rules

4-84.2
Type Naming Rules

4-84.2.1
Complex Type Names for Complex Data Elements

4-84.2.2
Complex Type Names for Simple Data Elements

4-84.2.3
Type Names for Unqualified Datatypes

4-94.2.4
Type Names for Qualified Datatypes

4-94.2.5
Type Names for Codes and Identifiers

4-94.3
Element Naming Rules

4-94.3.1
Element Names for Complex Data Elements

4-94.4
Attribute Naming Rules

5-15
Declarations and Definitions

5-15.1
Type Definitions

5-15.1.1
General Type Definitions

5-15.1.2
Simple Type Definitions

5-15.1.3
Complex Type Definitions

5-45.2
Element Declarations

5-45.2.1
Global and Local Elements

5-45.2.2
Elements Bound to Complex Types

5-55.2.3
Elements Bound to Simple Types

5-55.2.4
Elements Representing Associations between Complex Data Elements

5-55.2.5
Elements Bound to Datatypes

5-55.2.6
Elements representing Code Lists and Identifier Lists

5-55.2.7
Empty Elements

5-75.2.8
XSD:Any Elements

5-75.3
Attribute Declarations

5-75.3.1
User Defined Attributes

5-75.3.2
Metadata Attributes

5-85.3.3
Global Attributes

Error! Bookmark not defined.5.3.4
Using Attribute Groups

5-85.3.5
XML Schema Location

5-85.3.6
XSD:Nil

5-85.3.7
XSD:anyAttribute

6-16
Extending and Restricting Types

6-16.1
Guidelines for Extension

6-16.2
Guidelines for Restriction

6-16.3
Xsd:SubstitutionGroup

6-16.4
xsd:final

7-17
Code Lists and Identifier Lists

8-18
Using XML Schematron

9-19
Miscellaneous XSD Rules

9-19.1
xsd:simpleType

9-19.2
Namespace Declaration

9-19.3
xsd:notation

9-19.4
xsd:appinfo

9-19.5
xsd:key and xsd:keyRef

10-110
XML Instances

10-110.1
Validation

10-110.2
Character Encoding

10-110.3
Root Element

10-210.4
XML Schema Instance Attribute Namespace Declaration

Error! Bookmark not defined.10.5
Empty Elements and Null Values

Appendix A Federal XML Naming and Design Rules Checklist
Appendix B Approved Acronyms and Abbreviations

Appendix C Metadata Components

Appendix D Approved Representation Terms

Appendix E Technical Terminology

1 Introduction

Shortly after the release of the World Wide Web Consortium (W3C) XML Schema Definition (XSD) Language specifications, the Federal XML Working Group released the first draft Federal XML Users Guide. That document provided developers with early guidance on creating XMLSchema in a consistent fashion so as to further XML interoperability. As XML has matured, the need for an update to that document has become more and more apparent. This document leverages that earlier work and is intended to enable more consistent, interoperable XML solutions at every level with the federal government.
1.1 Purpose

The purpose of this Federal Naming and Design Rules and Guidelines (NDRG) document is to provide:

· a flexible federal modularity model that defines the structure for creating interoperable XML Schema
· a clearly defined namespace scheme that ensures consistency across Agencies

· a versioning scheme that will support consistency in versioning of government XML Schema
· a Federal canonical XML Schema for base Data Types

· specific NDR’s by government agencies or communities of practice that build on this document

· a reference to use for a mapping of different agency NDR’s to each other
1.2 Scope

This Federal XML Naming and Design Rules and Guidelines document is intended for use by Executive Branch Departments and Agencies (hereinafter referred to as Agency) that employ XML, including commercial and government off-the-shelf XML related product implementations. It should be used by contractors and vendors doing XML development work on behalf of Departments and Agencies. Agencies developing specific XML Naming and Design Rules and Guidelines should use this document as the baseline for those efforts.
Section of this document describes that XML can be used within data-centric as well as document-centric environments. The rules and guidelines in this document, however, apply only to the development of XML content intended for use in data-centric applications. Within IT systems, XML Schema can also be used to support document presentation requirements.
This document, however, provides no guidance regarding document-centric scenarios and should not be considered as guidance for document-centric XML Schema development. Any references to document-centric XML Schema is included solely to establish a context for the respective rule or guidance for those readers who may be more familiar with document-centric initiatives..

Finally, it is critical to note that this document provides one piece of a larger whole. That is, while the rules and guidance put forth in this document provide the means by which XML interoperability efforts can be streamlined, successful adoption and implementation of these rules and guidance can occur only when they are understood within the context of a governance framework.

Such a framework will specify the policies and procedures for such things as submission and approval of XML Schema content by an agency for use by the larger federal community. The definition of such a governance framework and its rules of engagement are fully outside of the scope of this document but are assumed (and referred to as such) to be critical, supplementary content to this document.
1.3 Audiences

· Developers of Federal Enterprise XML Schema. Federal enterprise XML Schema are those XML Schema that will achieve status as a standard to be used across the federal government by all agencies and departments. These include federal level reusable XML Schema as defined in Section (x.x), as well as XML Schema designed for specific business processes or information blocks that will have widespread reuse.
· Agency level developers interested in fostering interoperability. Agency level XML Schema and XML Schema components can be developed with an eye towards future interoperability. These would include XML Schema whose initial focus is limited to a specific agency, but whose broader use for the entire federal government is either a possibility or an objective.
· Developers of Agency XML Schema and Government organizations looking for guidance. Agencies who are looking to avoid reinvention should look to adopt the Federal NDRG. Agencies are encouraged to apply even stricter interpretations than currently exist for rules in this document whose language is other than MUST. These rules are well suited for such an approach and will provide Agencies an out of the box experience for XML development that will remain at the Agency level.
· Private sector organizations who wish to track or support government efforts. Many private sector content and application developers have a vested interest in following the direction of the federal government as a way of ensuring that their products, services, and related offerings support government requirements. This NDRG provides such direction.
1.4 Terminology and Notation

The key words MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL in this document are to be interpreted as described in Internet Engineering Task Force (IETF) Request for Comments (RFC) 2119. Non-capitalized forms of these words are used in the regular English sense.

This document provides both rules and general guidance for federal XML Schema development. The term ‘rule’ should be understood as a unconditional requirement in regards to inter-agency XML data exchange. As such, this document’s use of the RFC 2119 terminology applies solely to inter-agency XML development rules.

Within the bounds of a specific agency, the reader should consider the RFC 2119 terms as guidance so as to promote interoperability with XML developed external to that agency.
 [Definition] – A formal definition of a term. Definitions are normative.

[Example] – A representation of a definition or a rule. Examples are informative.

[Note] – Explanatory information. Notes are informative.

[RRRn] - Identification of a rule that requires conformance to ensure that an XML Schema is conformant. The value RRR is a prefix to categorize the type of rule where the value of RRR is as defined in Table 1 and n (1..n) indicates the sequential number of the rule within its category. In order to ensure continuity across versions of the specification, rule numbers that are deleted in future versions will not be re-issued, and any new rules will be assigned the next higher number - regardless of location in the text. Future versions will contain an appendix that lists deleted rules and the reason for their deletion. Only rules are normative; all other text is explanatory.

Figure 1 - Rule Prefix Token Value

	Rule Prefix Token
	Value

	ATD
	Attribute Declaration

	ATN
	Attribute Naming

	CDL
	Code List

	CTD
	ComplexType Definition

	DEN
	Data Element Dictionary Entry Names and Definitions

	DOC
	Documentation

	ELD
	Element Declaration

	ELN
	Element Naming

	GNR
	General Naming

	GTD
	General Type Definition

	GXS
	General XML Schema

	IND
	Instance Document

	MDC
	Modeling Constraints

	NMC
	Naming Constraints

	NMS
	Namespace

	RED
	Root Element Declaration

	SSM
	XML Schema Structure Modularity

	STD
	SimpleType Definition

	STR
	Standards Requirements

	VER
	Versioning

Bold - The bolding of words is used to represent example names or parts of names taken from the library.

Courier – All words appearing in courier font are values, objects, and keywords.

Italics – All words appearing in italics, when not titles or used for emphasis, are special terms defined in Appendix A.

The terms “W3C XML Schema” and “XSD” are used throughout this document. They are considered synonymous; both refer to XML Schemas that conform to Parts 1 and 2 of the World Wide Web Consortium (W3C) XML Schema Definition Language (XSD) Recommendations. See Appendix A for additional term definitions.

This document will refer to “W3C XML Schema” and “XSD” as “XML Schema” (case sensitivity being applicable). The Federal Enterprise Architecture Glossary of Terms
 defines XML Schema as follows:

An XML Schema is a description of a type of XML document, typically expressed in terms of constraints on the structure and content of documents of that type, above and beyond the basic syntax constraints imposed by XML itself. An XML Schema provides a view of the document type at a relatively high level of abstraction.

1.5 Conformance to PL 104-113 and OMB A119

Public Law 104-113 requires the use of voluntary consensus standards (VCS) where appropriate rather than development of government proprietary standards.
 In XML terms, this means that using existing xml technical and business standards should take precedence over developing federal or agency standards.
Office of Management and Budget (OMB) Policy Circular A-119 authorizes Agencies to expend funds in support of participating in the development of standards. This is important as government participation is critical in ensuring that government requirements are included in VCS standards.

To help guide conformance with the statute and policy, the following hierarchy of standards is to be used by Departments and Agencies (highest to lowest):

[ED. NOTE: PER 9/12/2005 Meeting “All XML components SHOULD be, at a minimum, at the enterprise level - agency.”

[ED. NOTE: PER 9/12/2005 Meeting “Should give an example for each one. Make sure that examples are not an endorsement.”
[ED. NOTE: PER 9/12/2005 Meeting “Make sure it is clear that hierarchy is dependent on a level meeting business requirements. If not, provide examples of how this is addressed.”
[ED. NOTE: PER 9/12/2005 Meeting “Talk about requirements to promote to federal wherever possible”
STR1
To ensure conformance with both statutory and policy requirements contained in Public Law 104-113 and Office of Management and Budget Circular A-119, all Federal XML implementations SHOULD adhere to the following hierarchy of standards in creating and using XML (VCS means Voluntary Consensus Standards). When attempting to identify candidate XML standards for use, XML analysts SHOULD refer those initiatives according to the following order of priority:
 * De jure VCS
 * Horizontal VCS
 * Vertical VCS
 * Federal Enterprise Wide Standards
 * Agency specific standards

[ED. NOTE: Per the 8/11/2005 meeting “Recommend additional explanation for the hierarchy at top of p.1-9. For example, what is a "de jure" VCS? What are "cross-sector" and "sector-specific" VCSs? Examples of each level would also help”]

Example of the VCS standards cited above are as follows:

· De jure VCS – Examples of these standards include the International Organization for Standardization (ISO), the International Electrotechnical Commission (IEC), the United Nations Economic Commission for Europe (UNECE), and the International Telecommunication Union (ITU).

· Horizontal VCS – Examples of these standards include the American National Standards Institute (ANSI), and United Nations Centre for Trade Facilitation and Electronic Business (UN/CEFACT).
· Vertical VCS – Examples of these standards include the Open Travel Alliance (OTA), the Petroleum Industry Data Exchange (PIDX), and the Extensible Business Reporting Language (XBRL).
· Agency Specific Standards – Examples of these standards include EPA’s Core Reference Model, and Global Justice XML.

· De facto –

Agencies are encouraged to address XML at an enterprise level.

SR2
Agencies SHOULD create Agency level policy, procedures and guidance to ensure XML is developed and governed at an enterprise level

As Agencies move forward with enterprise level approaches to XML, Agency level XML components – elements, complex types, and XML Schema will begin to emerge. These components provide significant wealth to the federal government as a whole and should be made available for reuse. The best way to make this happen is for Agencies to promote their XML components as candidate Federal components, and to appropriate Voluntary Consensus Standards bodies.
STR3
Agencies SHOULD promote Agency level XML components to candidate federal level components and candidate Voluntary Consensus Standards Bodies
[ED. NOTE: Per the 8/11/2005 meeting “Recommend striking these rules, as they are out of scope of naming & design rules. They address policy and operational aspects”]

1.5.1 W3C Recommendations

In keeping with the basic tenants of PL 104-113 and OMB A-119, Federal XML will be based on recognized standards rather than developing proprietary standards. Standards promulgated by nationally or internationally accredited standards bodies (such as ISO, IEEE, ANSI, UN/CEFACT, etc.) should always be adhered to when developing applications within the domain that the standard addresses. The only exception to this is when a standard produced by one of these bodies competes with a similar product of the W3C. In this case, only, the W3C should have precedence. Although competing standards exist in the XML space, the World Wide Web Consortium is the only International Standards organization that is committed to ensuring end-to-end interoperability of its suite of XML standards. The W3C standards are recognized throughout the world as the authoritative set of XML standards, and the vast majority of developers use W3C standards rather than those of other competing bodies. Accordingly, Federal XML will be primarily based on the W3C suite of XML standards.

[STA1]
All XML Schemas MUST be conformant to the W3C XML Schema Recommendations: XML Schema Part 1: Structures and XML Schema Part 2: Datatypes.

In general, production applications should only use software that implements W3C Final Recommendations and final specifications of the accredited standards bodies referenced in the above paragraph.
[STA2]
All XML Schema MUST be based on the W3C suite of technical specifications holding recommendation status.

Applications using software that implements W3C technical reports at other stages of the development process, or other draft products of Voluntary Consensus Standards bodies, should only do so with the following restrictions:

· Production Applications:

· Prior to creating, incorporating or using software that implements non-W3C specifications, activities MUST:

· Ensure that no competing W3C endorsed recommendation exists or is being developed.

· Ensure that the specification is a product of an accredited standards body (ISO, IEEE, ANSI, UN/CEFACT) or a credible Voluntary Consensus Standards body such as the Organization for the Advancement of Structured Information Standards (OASIS), the OMG, OAG, UDDI, RosettaNet, or BizTalk.

· Pilot Applications: Activities developing pilot applications (as a precursor to production) MAY also implement software that conforms to W3C technical reports with a Candidate Recommendation status.

· (Advanced Concept) Demonstrations: Activities developing demonstration applications (as a proof of concept) MAY also implement software that conforms to W3C technical reports with a Working Draft status or another accredited standards body or Voluntary Consensus Standards body’s draft specifications.

Proprietary extensions to W3C Technical Specifications or other technical specifications by accredited standards bodies should not be employed in any software or XML document (instance, XML Schema, stylesheet) that will be shared publicly with activities outside a particular development environment.

[STA3]
Proprietary extensions to the W3C specifications MUST never be used.

To ensure that XML content provided by other standards groups is used appropriately, agencies should defer to the conformance, compliance, or certification clauses issued by those organizations.
1.6 Guiding Principles

Federal XML guiding principles encompass three areas:

General guiding principles

Extensibility

Code generation

1.6.1 General Guiding Principles

Tool Use and Support – The design of Federal XML will not make any assumptions about sophisticated tools for creation, management, storage, or presentation being available, nor levy any government unique requirements that would necessitate tool vendors developing proprietary extensions to support Federal requirements.

Legibility – Federal XML documents should be human-readable and reasonably clear.

Simplicity – Federal XML content developers should strive to design XML Schemas in such a way as to keep them as simple as possible to meet the requirements at hand.
Component Reuse – Federal XML Schema should make use of the principle of reuse which has been proven as a successful design strategy within the software industry.

Standardization – The number of ways to express the same information in a Federal XML instance is to be kept as close to one as possible.

Prescriptiveness – Federal XML Schema design will balance prescriptiveness in any single usage scenario with prescriptiveness across the breadth of usage scenarios supported. Having precise, tight content models and Datatypes is a good thing.

XML Technology – Federal XML Schema design will avail itself of standard XML processing technology wherever possible (XML itself, XML Schema, XSLT, XPath, and so on). Federal XML implementations will be cautious about basing decisions on “standards” (foundational or vocabulary) that are works in progress.

Legacy formats – Federal XML Schema design is not responsible for catering to legacy formats or syntax.

1.6.2 Design For Extensibility

Many eBusiness documents are, broadly speaking, useful but require minor structural modifications for specific tasks or industries. When a truly common XML structure is to be established for eBusiness, it needs to be easy and inexpensive to modify.

Many data structures used in eBusiness are very similar to “standard” data structures, but have some significant semantic difference native to a particular industry or process. In traditional Electronic Data Interchange (EDI), there has been a gradual increase in the number of published components to accommodate market-specific variations. Handling these variations are a requirement, and one that is not easy to meet. A related EDI phenomenon is the overloading of the meaning and use of existing elements, which greatly complicates interoperation.

To avoid the high degree of cross-application coordination required to handle structural variations common to EDI and XML Document Type Definition (DTD) based systems - it is necessary to accommodate the required variations in basic data structures without either overloading the meaning and use of existing data elements, or requiring wholesale addition of new data elements. This can be accomplished by allowing implementers to specify new element types that inherit the properties of existing elements, and to also specify exactly the structural and data content of the modifications.

This can be expressed by saying that extensions of core elements are driven by context.
 Context driven extensions should be renamed to distinguish them from their parents, and designed so that only the new elements require new processing. Similarly, data structures should be designed so that processes can be easily engineered to ignore additions that are not needed.

1.6.3 Data versus Document Centric XML
This document provides rules and guidance from the perspective that XML applications fall into two distinct types: data-centric and document-centric. The paragraphs below provides an overview of each of these types but, as stated in section 1.2 of this document all rules and guidance contained herein pertain only to data-centric applications of XML. Document-centric XML is not within the scope of this document.
Data-centric XML is used to manage the exchange of structured data between software applications. A common scenario for using data-centric XML is the exchange of data between a buyer and a supplier.

In contrast, document-centric XML is used to present formatted content (typically unstructured) for human consumption or viewing. A common scenario for using document-centric XML is the formatting of textual information for presentation on a web page or some other media.
As is stated in the “XML Design Rules and Conventions for the Environmental Information Exchange Network: Section 2. Schema Design Rules” document which was published by the EPA, data-centric XML can be understood as follows:
Developers use data-centric XML for the structured electronic exchange of data across the Internet (for example, when information is sent from one database to another or when a person inputs data into a web form and submits the data to a database). Data-centric XML focuses on data types and, therefore, must be more rigid than document-centric XML. Usually, in data-centric XML, the XML instance generates automatically based on an XML schema and input into a back-end database without human intervention.

The following are characteristics of data-centric XML:

· Has granular detail (numerous tags)

· Has nonvariable structure

· Is machine generated
That document describes data-centric XML as follows:

Document-centric XML is used primarily for presentations and often contains graphics. Document-centric XML is far less rigid than data-centric XML, and typically defines the structure at a higher level. In document-centric XML, an author creates the XML instance based on an XML schema, which is combined with a stylesheet that renders the information in a specified format.

The following are characteristics of document-centric XML:

· Has broad detail (few tags)

· Has free-form structure

· Is human generated (using XML authoring tools

1.6.4 Code Generation

This NDR document makes no assumptions on the availability or capabilities of tools to generate Federal conformant XSD XML Schemas. The Federal NDR design process has scrupulously avoided establishing any naming or design rules that sub-optimizes the XSD in favor of tool generation. Conformance to W3C technical specifications holding recommended status ensures that no preference is given to particular implementation approaches or tools in generating XML.
1.7 Document Organization
This Federal Naming and Design Rules document is organized as follows:

[ED. NOTE: Per 9/12/2005 meeting “need to have a paragraph in terms of governance for this document and governance in terms of standards]

[ED. NOTE: Per 9/12/2005 meeting “where security is not an issue then components need to be visible”]

2 Information Analysis
XML Schemas provide a mechanism with which trading partners can control data exchanges with one another. XML Schemas are expressed in XML syntax and, therefore, exhibit characteristics specific to the XML language. Through this XML
This document will provide a high-level introduction to the topic of information analysis and its relevance to XML Scheme design and development. For those readers who wish to delve more thoroughly into this topic, numerous articles have been written that provide an in-depth stufdy of this topic. One such article is found on XML.com and describes analysis and design techniques (in 3 parts) by which UML model scan be translated into XML Schema models.

2.1 Defining Data
Sound XML Schema design, especially for XML Schema supporting data centric XML exchanges, must have a solid foundation in sound data models. Commonality in data modelling, and by extension process modelling, enables the expression of XML Schema naming and design rules in a consistent fashion.

Hitrorically, data Models have been typically expressed in terms of Entity Relationship Diagrams or Data Classification Structures (one example being UML Class Diagrams). As shown in Figure 2-1, these two modelling systems share common concepts. Within the Both entities and objects represent discrete things. Both entities and objects have data element concepts that identify that portion of a data element that is independent of any particular data typing or representation. Both entities and objects have simple data elements, that part of a data element that describes its characteristic. The fundamental difference is that entities only define the data, whereas class diagrams define both the data and its behavior.
Figure 2-1. Data Structures

[image: image1.emf]Data

Element

(Type)

Object

Class

Property

Representation

Attribute

(Type)

Entity

(Type)

Generic

Data

Element

Data

Element

Concept

Entity Relationship

Diagram

Data Model

ISO 11179

Data Element

Classification Structure

Source: ISO 11179

In an entity relationship data model, each entity may have multiple attributes. In a class based data model, each Class may have multiple properties. The element that represents an Entity with all of its attributes, or a class with all of its properties is an aggregation (complex) data element. Complex data elements can have varying contents depending on the way in which it is being used. Data elements that represent an attribute of an entity, or a property plus representation of a type, represent simple (generic) data elements. Simple data elements are reusable across multiple entities/classes.
2.2 Defining Relationships

Complex data elements may use other complex data elements as one of their properties. For example, a Person complex data element may use a Address complex data element. In this relationship, Person has an association with Address. Person is said to inherit the properties of Address.

In a UML diagram, such as figure 2-2, a physical connection is made between the classes and the nature of that relationship is expressed as a word or words that reflect the role of the associated class as the property of the associating class. Figure 2-3 indicates that the association between Person and Address is Mailing Address.
Figure 2-2 Class Association in UML

[image: image2.emf]-First Name

-Middle Name

-Last Name

-Birth Date

Person

-Number

-Street Name

-City

-State

-Country Identifier

-Postal Code

Address

0..1

+Mailing

*

In a semantic diagram, such as figure 2-4, the properties of the associated class represented by the complex data element Mailing are represented as a single property in the associating class Person as Person. Mailing. Addess..

Figure 2-3 Class Association in Semantic Diagram

[image: image3.emf]-Person. First Name. Text

-Person. Middle Name. Text

-Person. Last Name. Text

-Person. Birth Date. Date

-Person. Mailing. Address

Person Complex Data Element

-Address. Number. Text

-Address. Street Name. Text

-Address. City. Text

-Address. State. Text

-Address. Country Identification. Identiifier

-Address. Postal Code. Code

Address Complex Data Element

2.3 Transforming Data into XML
Entity relationship diagrams, object class models, and semantic diagrams express conceptual data models that enable transforming their data constructs into consistent, sound XSD artifacts. As shown in Figure 2-4, the complex data elements that represent entities or object classes can be expressed as global elements and named complex types. Attributes and properties that represent simple data element properties can also be expressed as global elements and complex types. Representation terms as the expression of the data type, can be expressed as either complex or simple types depending on their usage requirements.
Figure 2-4. Transforming Data constructs into XML Artifacts

[image: image4.emf]Object

Class

Property

Representation

Attribute

(Type)

Entity

(Type)

Entity Relationship

Diagram

Data Model

ISO 11179

Data Element

Classification Structure

Global Element/

xsd:complexType

Global Element/

xsd:complexType

xsd:complexType

or

xsd:simpleType

Simple XSD Transformation

Beyond the expression of simple and complex data elements, agencies must also accommodate the relationships (associations) between classes. This is accomplished by declaring distinct global elements which represent the association of 2 or more object classes. These association objects then become object classes in their own right and become integral to the semantic model outlined in Figure 2-4 . Within that semantic model, association objects would fall within the catrgory ‘object class’ and, as such, would be understood as complex type structures within an XML Schema.
The concept of an association object is similar

3 General XML Constructs

3.1 Overall XML Schema Structure

Consistency in development of XML Schema includes consistency in the appearance and overall structure of each XML Schema. By defining a canonical form for Federal XML Schema files, agency XML Schema will all have a consistent look and feel, which should reduce development effort and costs.
[GXS1] Federal Level Data-centric XML Schema SHOULD conform to the following physical layout as applicable:

XML Declaration

<!-- ===== xsd:XML Schema Element With Namespaces Declarations ===== -->

xsd:XML Schema element to include version attribute and namespace declarations in the following order:

xmlns:xsd

Target namespace

Default namespace

CommonComplexElements

CommonSimpleElements

Datatypes

Identifier Schemes

Code Lists

Attribute Declarations – elementFormDefault=”qualified” attributeFormDefault=”unqualified”

<!-- ===== Imports ===== -->
CommonComplexElements XML Schema module(s)
CommonSimpleElements XML Schema module(s)
Unqualified Datatypes XML Schema module(s)
Qualified Datatypes XML Schema module(s)

Code and Identifier List XML Schema module(s)
<!-- ===== Global Attributes ===== -->

Global Attributes and Attribute Groups

<!-- ===== Root Element ===== -->

Root Element Declaration

Root Element Type Definition

<!-- ===== Element Declarations ===== -->

alphabetized order

<!-- ===== Type Definitions ===== -->

All type definitions segregated by simple and complex as follows

<!-- ===== Complex Data Element Type Definitions ===== -->

alphabetized order of Complex Data Element xsd:complexType definitions
<!-- =====Simple Data Element Type Definitions ===== -->

alphabetized order of simple data element xsd:complexType definitions
While agencies should strive to include as much of this information as possible, it is understood that this list may not be fully represented in all circumstances. Federal XML Schema developers should include as much of this information as is appropriate for their respective situation. Doing so will promote consistency throughout the federal XML Schema portfolio.
The following list provides a description of each of the content models outlined in rule GXS1 (above):
· Target namespace: The target namespace specifies the namespace to which all content defined within the Schema file. For a more complete description of the concept of namespaces see references (tbd).
· Default namespace: The default namespace specifies the namespace to which all content defined within a Schema belongs to, unless specified otherwise.
· CommonComplexElements: These elements contain data structures that are complex in nature. Typically, such elements will contain attributes or other, nested elements. The data types of these elements should be defined in the appropriate common themselves An example of such an element is listed in figure ---.
<xs:element name="Person" type="PersonType"/>
...

<xs:complexType name="PersonType">

<xs:sequence>

<xs:element name="FirstName" type="xs:string"/>

<xs:element name="MiddleName" type="xs:string"/>

<xs:element name="LastName" type="xs:string"/>

</xs:sequence>
</xs:complexType>
· CommonSimpleElements: These elements contain data structures that are simple in nature. Typically, such elements will contain simple textual or numeric data. An example of such an element is listed in figure ---

<xs:element name="PersonName" type="xs:string"/>
3.1.1 Root Element

XML 1.0 describes the concept of a root element that serves as the anchor for an XML instance. Specifically, XML 1.0 states “There is exactly one element, called the root, or document element, no part of which appears in the content of any other element.” The root element has many uses.

Any global element can function as the instance root element. Since Federal XML Schemas will have all elements declared globally, this has the potential to cause confusion within the developer and user community. Accordingly, Federal XML Schema will identify one global element as the root element for a particular instance. This will be accomplished through an xsd:annotation child element for that element in accordance with the following rule:
[ELD1]
Each XML Schema MUST identify one and only one global element declaration that defines the document level container being conveyed in the XML Schema expression. That global element MUST include an xsd:annotation child element which MUST further contain an xsd:documentation child element that declares "This element MUST be conveyed as the root element in any instance document based on this XML Schema expression."
3.2 Constraints

3.2.1 Naming Constraints

Since each federal XML Schema represents a collection of data derived from a syntax-neutral library, it is critical that each content model contained within federal XML Schemas can be traced back to its syntax-neutral counterpart. Assuming globally defined content (as put forth in section 3.3 of this document), data types and elements may be reused within each federal XML Schema.

While reuse of XML content is beneficial, each element or attribute within a federal XML Schema must refer to a globally unique path within the federal component library. This provides a mechanism by which each piece of XML content can be identified according to its clear semantic definition.

See section --- for guidance on how to construct dictionary entry names.

[ED note: This rule should be discussed in regards to its reference to a single federal dictionary from which all XML Schema content is ‘derived’.
[NMC1]
Each dictionary entry name MUST define one and only one fully qualified path (FQP) for an element or attribute.

3.2.2 Modeling Constraints

The goal of this document is to disambiguate information references within federal XML documents. This is done by promoting use of a common set of data and a consistent method for naming that data.

In support of this goal agencies should, when possible, use only those data elements that have undergone the requisite approval process. These approval processes should apply to agency-specific content as well as content meant to be consumed by the federal community as a whole. When it is not possible for an agency to use content from the library of approved content at the agency level or at the federal level, that agency may choose to develop their own content for use in the short-term while also submitting that content for formal approval at the appropriate level.
This document assumes that a central, governing body will control the definition of federal XML content (i.e., semantic definitions, names, etc.) at the agency specific level as well as the federal level. The policies and procedures surrounding such controls is not within the scope of this document.
[MDC1]
Libraries and XML Schemas MUST only use approved datatypes.

Predominantly, data contained within federal XML Schema provides a structured rendition of data. The makeup of each data type is discernable clearly and data is structured into its component parts. XML Schemas that follow this design philosophy are known as data-centric XML Schemas.

In certain cases, an agency may need to include unstructured, textual data within a data-centric XML Schema (for any number of reasons). In such cases, an XML instance document would contain both data that is well-structured by its enclosing elements and attributes as well as data that is free flowing text. When an agency requires this mixed content model, each XML Schema should contain documentation that denotes the unstructured nature of that XML Schema content.

[MDC2]
Mixed content MUST NOT be used in data centric XML Schema except where contained in an xsd:documentation element.

It is important to note that this mixed-content scenario is not equivalent with the document-centric XML Schema style describes earlier in this document.

Figure --- illustrates how such mixed content should appear within an XML Schema.
Figure ---

<xsd:complexType name="ExampleType">

<xsd:annotation>

<xsd:documentation xml:lang="en">This is sample text that depicts how textual content should appear within a data-centric XML Schema.

</xsd:documentation>

</xsd:annotation>
...

In this example, explanatory text is included in the XML Schema documentation, but it does not impact the interpretation of the XML Schemas structured data by a validating parser.

3.3 Reusability Scheme

[ELD2]
All data-centric element declarations MUST be global. All document-centric element declarations SHOULD be global.

The XML Schema language was designed to be flexible and to support myriad methods for defining XML data structures. While this flexibility is beneficial in many ways, it presents the need to decide on a common design approach within a community of trading partners.

Defining each XML Schema element at a global level will ensure that XML Schema content is unique.

As a side note, federal XML and software developers should be aware that gloal element definitions within XML Schema may have an impact on the design of application softwar. Appendix --- provides references regarding this topic.

[ED note: LMI is presenting materials on this topic at XML 2005. References may be made as appropriate.
3.4 Namespace Scheme

Federal agencies should make use of the namespace mechanisms inherent to the XML Schema language. Numerous XML Schema design alternatives are available to Federal agencies with regards to namespaces. Each XML Schema can define its content in zero or one target namespace and decisions made at this level will have a significant impact on how XML Schema are to be developed, maintained, governed, and used within software applications.

Given that there are many options regarding namespace modularity, it is critical that each agency develop its XML vocabulary within a set of namespace that is designed to be managed in coordination with the larger, federal XML vocabulary.

The following sections provide rules and guidelines that will position an agency to harmonize its XML vocabulary(s) with other agencies while maximising the chances to reuse existing content, and thereby lowering development costs.
3.4.1 Declaring Namespaces

The configuration of XML Schema namespaces is tied directly to the concept of XML Schema modularity, which is outlined in section 3.6.2 of this document. The rules below deal specifically with namespace declaration, but readers should understand these rules within the larger context of XML Schema modularity. A description of ‘internal’ and ‘external’ XML Schema modules can be found in section 3.6.2.

Each root and external XML Schema should declare a globally unique target namespace. Adherence to this rule will ensure that XML Schemas are developed consistently and that the content within each XML Schema is unique throughout the federal XML Schema library.
This rule applies to ALL federal XML Schemas with the exception of internal XML Schema modules. Those internal XML Schema modules do not explicity define a target namespace. Since their content is defined in no namespace, however, all content they contain are ‘coerced’ into the root XML Schema that includes those internal XML Schemas.
[NMS1]
Every XML Schema module, except internal XML Schema modules, MUST have a namespace declared using the xsd:targetNamespace attribute.

Figure --- provides an example of how this declaration would appear in an XML Schema file:

Figure ---

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
targetNamespace="urn:us:com:supplyinventory:inventorydepartment:1:0" xmlns="urn:us:----:1:0"
xmlns:cac="urn:us:---:commonaggregatecomponents" elementFormDefault="qualified" attributeFormDefault="unqualified" version="1:0">

Each XML Schema major version MUST be declared in its own unique namespace.
[NMS2]
Every defined or used XML Schema set version MUST have its own unique namespace

Since the function of a target namespace is to define ownership of the content defined in the pertinent XML Schema(s), it is critical that each federal namespace contain only content that has been developed by a federal agency. Use of any non-federal, external XML content would misrepresent content ownership by changing the namespace associated with external content to a federal namespace.
A ‘federal namespace’ should be understood as one that has undergone the requisite review, approval, and registration processes. As stated earlier in this document, such governance activities are out of scope of this document.
[NMS3]
Federal Namespaces MUST only contain federally developed XML Schema modules

Once published as standard, the contents of a federal XML namespace must not be modified. If the assumption is that this rule applies only to major version changes, then explanatory text may begin as follows: “Once published as a standard, the contents of a federal XML namespace (as contained in one or more XML Schema files) must not be modified to break compatibility with previous minor versions.”
 [NMS7]
Published namespaces MUST never be changed.

[ED. NOTE: Per the 9/12/2005 meeting “need to look at the should requirement”] – Per 11/10/2005 see explanatory text added to section 3.5.3

[ED. NOTE: Per the 9/12/2005 meeting “need to clarify what is defined as a “minor” version. Also need to differentiate between versioning of XML Schemas and versioning of XML Schema namespace”] – Per 11/10/2005 see explanatory text added to section 3.5
[ED. NOTE: Per the 8/11/2005 meeting “recommend the URN and provide consistent approach to either namespace approach”] – Per 11/10/2005 see explanatory text added to section 3.4.2
[ED. NOTE: Per the 8/11/2005 meeting “need another separator for parsing variable sub-domains] --
[ED. NOTE: Per the 8/11/2005 meeting “recommend avoid using a period since it is commonly used for programming purposes”]

3.4.2 Namespace Uniform Resource Indicators

To support namespace uniqueness and modularity, each federal namespace should be defined using a consistent syntax. URL and URN syntax are prevalent options for defining namespaces. Federal agencies should create XML Schema namespace URI’s in a way that is consistent with the larger, federal library of XML Schemas.
Agencies should consider both options according to the following criteria that characterize the purpose of an XML Schema namespace using URI syntax:

· Persistence—Each namespace should be persistent and global within the federal XML community. As stated earlier, this document does not specify and rules or guidelines that control issues associated with governance or policies.
· Ease of understanding—The ability for XML authors and general users to grasp the concept of a namespace. URL’s are familiar to most members of the XML Schema ‘audience’. URN’s are not. Depending on perspective, this can be seen as an advantage or a disadvantage.
· Syntactic Rigorousness—The syntax used to express the XML Schema namespace should provide an unambiguous way to specify a full URI.
· Reference to external documents—In some cases, URL namespaces may reference a site (via the URL) that contains documents and/or materials related to the messages that conform to the relevant Schema.
Based on these discreet criteria, the following statements about URN and URL syntax can be considered in light of these criteria (to be defined…)
For some federal XML analysts, however, URL,s may prove to be more intuitive and simpler to use. Regardless of which syntax is chosen, it is critical that a consistent approach be defined, adopted, and enforced throughout the agency.

Agencies can refer to the Federal Namespaces paper
 for guidance on namespace creation. Each federal namespace should consider including the following structural components:
· 1st Level Domain – NID of US
· 2nd Level Domain – Organization hierarchy. In this case, ‘gov’.
· 3rd Level Domain – Specific Government Hierarchy – EPA, OMB, DoD, Treasury

· 4th Level Domain – Agency Level Hierarchy – USN, USAF, IRS, FMS

· 5th Level Domain – Resource Type – XML Schema or Other as Identified

· 6th Level Domain – Resource Status

· 7th Level Domain – Resource Name

· 8th Level Domain – Versioning

From the list above, it’s critical to note that the eighth level domain component is applicable for major versions only. As noted in section 3.5 of this document, minor versions are denoted by the document ‘id’ attribute rather than the target namespace.
Figure --- shows an example XML Schema header using the URN namespace syntax cited above:

Figure ---

<xsd:import namespace= "urn:us:gov:dod:dlis:xmlschema:draft:commonaggregatecomponents"
schemaLocation="CommonAggregateComponents.xsd"/>
Figure --- shows an example XML Schema header using the URL namespace syntax cited above:

Figure ---

<xsd:import namespace=
"http://us/gov/dod/dlis/xmlschema/draft/commonaggregatecomponents/1.0"
schemaLocation="SI-Enterprise-CommonAggregateComponents.xsd"/>
In order to preserve the integrity of each federal XML Schema namespace, it is critical that the namespace contain only content developed by the respective agency. XML Schema content developed by external entities should be referenced via the import mechanism (see section --- below).

[NMS4]
Agency Namespaces MUST only contain agency developed XML Schema modules

To promote consistency within the federal XML vocabulary, each draft federal XML Schema should adhere to a common structure. Such consistency will also ease configuration at the application software layer.
[NMS5]
The namespace names for Federal level XML Schemas holding draft status MUST be of the form:

urn:us:
To promote consistency within the federal XML vocabulary, each approved federal XML Schema should adhere to a common structure. Such consistency will also ease configuration at the application software layer.
 [NMS6]
The namespace names for Federal level XML Schemas holding Approved status MUST be of the form:

urn:us:
3.5 Versioning Scheme

Federal XML Schemas and the data models they contain will likely not be static. Rather they will change and evolve over time in ways that are trivial as well in significant. As such, it is critical that a robust and flexible mechanism exist to record the version of each XML Schema as it changes.

Numerous mechanisms exist to track the XML document versions. To meet this requirement, XML Schema authors may choose to use the targetnamespace attribute, an ‘id’ attribute, the file name of the XML Schema, and so on. A detailed explanation of the various XML Schema versioning options that exist is not part of the scope of this document. Numerous references are available on the public Internet.
This Federal NRDG document recommends a specific XML Schema versioning technique which makes use of the targetnamespace attribute for major version changes and an ‘id’ attribute for minor version changes. For consistency and completeness, major versions should also use the ‘id’ attribute. This technique provides clear distinction across major versions while protecting XML content from needless revision with minor changes.
This section describes XML Schema versioning only as it is reflected in the ‘id’ attribute. Section 3.6.5 (Modularity and Namespaces) describes how federal XML Schemas capture versions n the targetnamespace.

The following sections outlines the method by which both draft and standard XML Schemas should be versioned using the ‘id’ attribute.
3.5.1 Draft XML Schema
Prior to publication as a federal standard, agency XML Schemas must first be published in draft status. This document does not address draft submission and approval procedures at the federal level.
In addition to the identification of the XML Schema major version within the target namespace (see section 3.6.5.1 of this document), agency XML Schemas should provide an ‘id’ attribute within the XML Schema header that also contains the major version.
[VER1]
Every federal and Agency XML Schema and XML Schema module major version committee draft MUST have a document-id of the form

<name>-<major>.0[.<revision>]
This practice provides a consistent mechanism for both XML analysts and software applications to determine readily a XML Schema’s version.
Figure --- shows how this ‘id’ attribute would identify a major version:

Figure --- [ED note: XML example to be inserted]
Similarly. agencies should identify XML Schema minor version revisions within the same ‘id’ attribute within the XML Schema header. This id attribute will identify the version that is also captured in the XML Schemas target namespace.
[VER3]
Every minor version XML Schema or XML Schema module draft MUST have a document-id of the form

<name>-<major >.<non-zero>[.<revision>]
3.5.2 Standard XML Schema
Agencies should also identify XML Schema minor version revisions within standard XML Schemas by way of the ‘id’ attribute within the XML Schema header.
[VER2]
Every federal and Agency XML Schema and XML Schema module major version Standard MUST have a document-id of the form

<name>-<major>.0
Agencies should also identify XML Schema major version revisions within standard XML Schemas by way of the ‘id’ attribute within the XML Schema header. This id attribute will identify the version that is also captured in the XML Schemas target namespace.
[VER4]
Every minor version XML Schema or XML Schema module Standard MUST have an document-id of the form

<name>-<major >.<non-zero>
[ED. NOTE: Per the 8/11/2005 meeting “agreement on rule VER4”]
3.5.3 Minor Version Changes
A minor version change is one which does NOT cause XML instances conforming with the previous version to be invalid with the new version. Preservation of conformance of previous XML instances to a new XML Schema version is commonly referred to as maintaining backwards compatibility.

[ED. Note: The term version construct should be clarified]
[VER5]
For minor version changes, the name of the version construct MUST NOT change.

[VER9]
XML Schema and XML Schema module minor version changes MUST be limited to the use of xsd:extension or xsd:restriction to optionally alter existing types or add new constructs.

[ED note: This rule should be discussed to provide a bit more clear wording for ‘optional’. That is, restrictions are allowed for minor version changes only when they refer to content restrictions of an optional nature. The wording above may not be clear enough about that that.

[VER10]
XML Schema and XML Schema module minor version changes MUST not break semantic compatibility with prior versions.

3.5.4 Versioning Numbering Scheme
By providing a clear set of guidelines regarding how to determine the number of a XML Schema file, this document intends to promote a common and consistent numbering scheme across all federal XML documents.
When the major version of an XML Schema needs to be changed, the new version number should be the next sequential number. The relevant XML Schema file(s) should be incremented accordingly.
[VER6]
Every XML Schema and XML Schema module major version number MUST be a sequentially assigned, incremental number greater than zero.

Just as is the case with major versions, the number associated with a new minor version should be the next sequential number. The relevant XML Schema file(s) should be incremented accordingly.
[VER7]
Every XML Schema and XML Schema module minor version number MUST be a sequentially assigned, incremental non-negative integer.

3.5.5 Versioning Import Requirements
[VER8]
A minor version document XML Schema MUST import its immediately preceding version document XML Schema.

[ED. NOTE: Per the 8/11/2005 meeting “need a persistent location for versions and support documentation. They have to stay available as some will note upgrade with changes.”]
3.6 Modularity

Modularity refers to the organization of content within a set of XML Schema files. As is often the case with XML, many options are available to agencies defining a modularity model. At one end of the spectrum might be the preference to define the entirety of an agency’s XML portfolio within the space of a single XML Schema. At the opposite end, an agency may choose to create a distinct XML Schema file for each piece of XML content—no matter how small. In between these two options a variety of alternatives exist.
This document defines a clear method by which federal agencies can move toward a consistent framework for fragmenting and arranging their XML Schemas. This framework is known as XML Schema modularity. A robust Federal modularity model must support the following criteria:

· Common and Agency Unique Reusable components at the Data and Aggregation Levels

· Common and Agency Unique DataTypes

· Reusable Code and Identifier Lists

· Reusable State and Local modules

· Reusable External Standards Body modules

Figures 3-1 through 3-5 reflects such a model. The federal modularity model has a highly modularized structure that promotes reuse and standardization. The federal modularity model provides for both federal and Agency level XML Schema modules for complex data elements, simple data elements and datatypes; and also supports both internal and external XML Schema modules for code lists and identifier lists.
[ED. NOTE: Per 9/12/2005 meeting “agreement on reuse approach for the Federal level. And have it as a SHOULD at the agency level, but can break down them down further if circumstances dictate Will include a warning that there are complexities in managing namespaces and components.]

Figure 3-1 XML Schema Modularity Model

[image: image5.emf]Government and Source Standards Body

Schema

Root Schema Module

Internal Schema

Module(s)

Message

Assembly –

Single

Namespace

0..*

Include

Import

External Standards

Body Reusable

Entities Schema

Module

Other External

Reusable Entities

Schema Module

0..*

0..*

Import

Import

0..*

Figure 3-1 Federal XML Schema Modularity Model

[image: image6.emf]Root Schema Module

Internal Schema

Module(s)

Message

Assembly –

Single

Namespace

External Schema Modules – Individual Namespaces

Federal

Simple Data Elements

 Schema Module

Federal

Complex Data

Elements

Schema Module

Federal Unqualified

DataTypes (FUDT)

 Schema Module

Federal Qualified

DataTypes (FQDT)

Schema Module

Source Standards

Unqualified DataType

Schema Module

Code List (CL)

Schema

Module(s)

0..1

0..*

0..*

0..*

1

0..*

1

1

1

Agency Supplemental

Unqualified DataTypes

(ASUDT)

 Schema Module

Agency Supplemental

Qualified DataTypes

(ASQDT) Schema

Module

Identifier List (IL)

Schema

Module(s)

Agency

Complex Data

Elements

 Schema Module

Agency

Simple Data Elements

 Schema Module

1

1

1

0..*

0..*

0..*

0..*

1

1

1

0..*

1

0..1

0..1 0..1

0..1

1

0..1

4..*

1 1

1

1

Source Standards

Qualified DataType

Schema Module

1

0..*

0..* 0..* 0..*

0..*

1

Include

Import

External Standards

Body Reusable

Entities Schema

Module

Other External

Reusable Entities

Schema Module

0..*

0..*

Import

Import

Note: relationships

between shcema modules

in different namespaces

are xsd:import

3.6.1 Leveraging VCS Datatypes

At the heart of the Federal XML Schema modularity model are Voluntary Consensus Standard datatype XML Schema that provide for consistent expression of the most common core datatypes typically used in information sharing. These VCS datatype XML Schema serve as the basis of – are imported into – federal unqualified datatype XML Schema. These federal unqualified datatypes have no restrictions placed on them. Additionally, as Agencies promote their own restricted datatypes to federal enterprise level standards, an additional federal qualified datatype XML Schema will emerge. Both the federal unqualified and qualified datatype XML Schema modules will serve as the basis of – are imported into – Agency unique unqualified and qualified XML Schema modules.
3.6.2 XML Schema Modules
Modularity in XML Schema design promotes content reuse and eases XML Schema library maintenance. Modules can be either unique in their functionality, or represent aggregations of data content to facilitate better performance or XML Schema manageability. A modularity model provides an efficient and effective mechanism for using other XML Schema components as needed (by either including or importing them) rather than dealing with complex, multifaceted XML Schema.
This document provides a robust modularity model that leverages these benefits.

Root XML Schemas contain the data structure(s) specific to a particular business information exchange and are limited to defining a single root element and its associated complex type that fully describes that exchange. The complex type within the root XML Schema must reference other data structures by including or importing them (via the xsd:include or xsd:import mechanism).
[SSM1]
Root XML Schema expressions MAY be split into multiple XML Schema modules.

Figure --- shows how the header for a root XML Schema would typically appear.

Figure ---
By definition, a root XML Schema requires visibility to content defined in some other XML Schema. That XML Schema may, in turn import another, and so on. The root XML Schema, however, must only import the ‘lowest’ level XML Schema. That XML Schema will ensure that all required content is made available (vie the import mechanism).
[ED note: The group may want to consider changing the ‘root’ reference since what is being referenced is the conceptual root of a higher-level tree— not a true root level XML Schema as defined by this document. See the tentative reference to ‘first-level’ (below).

 [SSM2]
A root XML Schema in one namespace that is dependent upon type definitions or element declarations defined in another namespace MUST only import the root XML Schema from that namespace.

XML Schema modules used by the root XML Schema need to be treated as modules so that appropriate namespace decisions can be made. Rules in the sections below provide guidance for how to design those modules used by the root XML Schema.
Figure 3-1 (above) illustrates that, from the perspective of each root XML Schema, all other XML Schemas are to be treated as either internal or external. Internal XML Schemas should be included and external Schemas should be imported.
This rule is meant simply to further refine the concept that root XML Schemas are central to the notion of a specific step of a business process that is being modelled. All other Schema content, whether it be XML Schema that are internal or external to the root, are ancillary to that specific step in a process flow.
[SSM5]
XML Schema modules MUST either be treated as external XML Schema modules or as internal XML Schema modules of the root XML Schema.
3.6.2.1 Internal XML Schema Modules
If a root XML Schema needs additional complex types beyond those available in the reusable XML Schema module(s), then those data types must be defined in what is referred to as an internal XML Schema module. Content defined in these XML Schemas should be defined in the same namespace as the XML Schemas that are meant to use them. These XML Schemas are referred to as internal since their content is meant to be internalized by agency-specific root XML Schemas.

As such, each internal XML Schema module houses ancillary content for use by a root XML Schema (for whatever reason).
The XML Schema modularity model defined in this document ensures that logical associations exist between root and internal XML Schema modules and that individual modules can be reused as necessary.
[SSM6]
All internal XML Schema modules MUST be in the same namespace as their corresponding root XML Schema.

Internal XML Schema content should be defined in the same namespace as their including root XML Schema. Since the Internal XML Schema reside in the same namespace as the root, the root XML Schema must use the xsd:include mechanism to incorporate these internal modules.

It is important that a consistent file naming convention be applied to internal XML Schema modules. Adherence to a common convention will promote clarity of file contents and will simplify development efforts by reducing efforts to locate needed files.

 [SSM7]
Each internal XML Schema module MUST be named {ParentXML SchemaModuleName}{InternalXML SchemaModuleFunction}{XML Schema module}

To clarify the rules above that define the need for consistency between root and internal XML Schemas—from a namespace as well as a file naming perspective, figure --- illustrates how an this would appear within an XML Schema header:

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
targetNamespace="urn:us:dod:dlis:---:---:1.0"
xmlns="urn:us:---:1.0"
xmlns:cac="urn:us:---:commonaggregatecomponents"
elementFormDefault="qualified" attributeFormDefault="unqualified"
version="1.0">

3.6.3 Federal External XML Schema Modules

3.6.3.1 Complex Data Element XML Schema Modules

As noted earlier in this document, XML Schema modularity encourages XML content reuse (in addition to other benefits) throughout a library of XML Schemas. This reuse is enabled by the separation of certain XML Schema content into a XML Schema whos content should be available for use across a broader base of XML Schemas. The chief criteria by which federal XML Schemas should identify such content is the likelihood that other agency root XML Schemas will require such content. If, for example, a content model called ‘AddressType’ will likely to be needed by numerous agency XML Schemas, it makes good sense to move this data type into a widely available type library.

Accordingly, federal agencies should coordinate their XML Schema definition activities to work toward the creation of a common federal library of complex data types. These common data types will then be available for use throughout the broader agency community. These data types should be referenced from an XML Schema that contains all global elements available for use throughout the government,
[SSM8]
A XML Schema module defining all Federal Common Complex Data Elements MUST be created.
To promote awareness of this common XML Schema complex types, the federal community should assign the XML Schema an intuitive name that will make it easy for authors and developers to find and reuse the XML Schema and its content.
[SSM9]
The Federal Common Complex Data Elements XML Schema module MUST be named "fed:Common Complex Data Elements XML Schema Module"

3.6.3.2 Common Simple Data Elements
Just as it is beneficial for federal common complex data types to be apportioned to their own XML Schema, so to it effective for common simple data types to reside in their own XML Schema. These simple data types will be available for use by cmmon complex data types as well as elements defined within agency root XML Schemas.
[SSM10]
A XML Schema module defining all Federal Common Simple Data Elements MUST be created.

To promote awareness of this common simple types XML Schema, the federal community should assign the XML Schema an intuitive name that will make it easy for authors and developers to find and reuse the XML Schema and its content.
[SSM11]
The Federal Common Simple Data Elements XML Schema module MUST be named "fed:CommonSimpleDataElements XML Schema Module"

3.6.3.3 Unqualified Datatypes
In almost any modern software system, discreet data types such as amount, measure, quantity, and text provide the basic building blocks from which more complex data structures are developed. The XML Schema language provides numerous native data types for this purpose but in common data exchange scenarios, additional data attributes are needed.
For instance, data models commonly require an amount type which might include a monetary amount and a currency code. The XML Schema language does not provide this as a built-in ‘amount’ data type. So, a common federal amount data type could extend the built-in decimal data type and add a currency code attribute. Since the data type extends decimal, any element using this type could provide a numeric monetary value.
It will be beneficial for federal agencies to create a common XML Schema module that defines these frequently used data types. Since these data types are generic and do not specify any exceptional extensions or restrictions to the built-in XML Schema data types they are referred to as ‘unqualified’. Section 3.6.3.4 of this document defines the concept of a qualified data type.
[SSM12]
A XML Schema module defining all Federal Unqualified Datatypes MUST be created.

To promote awareness of this common unqualified data types XML Schema, the federal community should assign the XML Schema an intuitive name that will make it easy for authors and developers to find and reuse the XML Schema and its content.
[SSM13]
The Federal Unqualified Datatype XML Schema module MUST be named "fed:Unqualified Datatype XML Schema Module"

3.6.3.4 Qualified Datatypes
[ED note: This rule should be discussed regarding its clear reference to the Core Component data modeling concept of a Qualified Datatype (QDT). It is critical that a common understanding of what a QDT is, in the context of the federal NDRG, be established.

As noted above, agencies share the need to access data types that provide useful additions to the built-in XML Schema types. These are known as unqualified data types. However, when specializations to the federal qualified data types are needed, agencies will need to create a commonly available set of data types that provide further restrictions to the unqualified data types. The new data types resulting from such restrictions should be referred to as qualified data types.
[SSM14]
A XML Schema module defining all Federal Qualified Datatypes MUST be created.

To promote awareness of this common qualified data types XML Schema, the federal community should assign the XML Schema an intuitive name that will make it easy for authors and developers to find and reuse the XML Schema and its content.
[SSM15]
The Federal Qualified Datatypes XML Schema module MUST be named "fed:Qualified Datatypes XML Schema module"

3.6.4 Department and Agency Modularity Options

Each agency is given a great deal of flexibility in their own XML Schema modularity approaches. An agency may choose to simply promote all XML Schema artifacts to federal level for inclusion in the appropriate federal XML Schema. Or it may opt to create agency-specific XML Schema modules for complex data elements and simple data elements that apply to that agency’s problem space.
Agencies may choose to create a XML Schema module for each individual XSD artifact. They must however ensure that they do not reinvent existing artifacts – rather they should reuse available federal components and tailor those through derivation by extension or restriction.

Agencies should also reuse the datatypes available in the federal unqualified and qualified datatypes XML Schema modules. The federal unqualified and qualified datatype XML Schema modules will serve as the basis of agency unique unqualified and qualified XML Schema modules. Agency XML Schemas should import the Federal namespaces accordingly.
The term ‘reuse’ refers to the ability for root XML Schemas to use readily the content defined within common XML Schema(s). This document provides guidance that this reuse will occur by importing content from common XML Schema(s) into the root XML Schema(s). Reuse should not be understood as the ability to copy and paste content from a common XML Schema into a root XML Schema.

[SSM16]
Agencies SHOULD create Agency level XML Schema modules for reusable components not included in Federal level XML Schema. Agencies SHOULD submit all Agency reusable components for consideration as Federal level reusable components.
3.6.4.1 Agency Common Complex Data XML Schema Modules
When opting to create an agency-specific XML Schema module to contain complex datatypes, an agency can create an XML Schema specifically dedicated to that purpose. Such a XML Schema would represent an agency-specific analog to the federal external XML Schema module (see section 3.6.3 of this document)
[SSM17]
A XML Schema module defining Agency Common Complex Data Elements MAY be created.

It is important that a consistent file naming convention be applied to these agency-specific XML Schema modules. Adherence to a common convention will promote clarity of file contents and will simplify development efforts by reducing confusion of locating proper files.
 [SSM18]
Agency Common Complex Data Element XML Schema modules MUST be named "<agencyToken>:<AgencyName>
CommonComplexDataElements XML Schema Module"

3.6.4.2 Agency Common Simple Data XML Schema Modules
When opting to create an agency-specific XML Schema module to contain complex datatypes, an agency can create an XML Schema specifically dedicated to that purpose.
[SSM19]
A XML Schema module defining all Agency Common Simple Data Elements MAY be created.

As with the agency common complex data XML Schema modules, it is important that a consistent file naming convention be applied to the XML Schema module containing simple data types. Adherence to a common convention will promote clarity of file contents and will simplify development efforts by reducing confusion of locating proper files.

[SSM20]
Agency Common Simple Data Elements XML Schema modules MUST be named "fed: <agencyToken>:<AgencyName>
Common Simple Data Elements XML Schema Module"

3.6.4.3 Unqualified Datatypes
[SSM21]
A XML Schema module defining all Agency Unqualified Datatypes MAY be created.
[SSM22]
Agency Unqualified Datatype XML Schema modules MUST be named "<agencyToken>:<AgencyName> Unqualified Datatype XML Schema Module"

3.6.4.4 Qualified Datatypes

 [SSM23]
A XML Schema module defining all Agency Qualified Datatypes MAY be created.

[SSM24]
Agency Qualified Datatypes XML Schema modules MUST be named <agencyToken>:<AgencyName> Qualified Datatypes XML Schema module"

3.6.5 Modularity and Namespaces

XML Schema modularity refers to the manner in which content is distributed throughout a set of related XML Schema files. A well-designed modularity model is critical endowing a XML Schema library with implicit flexibility to meet the needs of a large community of XML Schema authors and software developers alike. While the XML Schema authoring community will drive the evolution of the XML data standards, that community should always be mindful of the impact that XML Schema design has on the software development community.
The XML Schema language allows for myriad options when establishing a modularity model for an XML Schema library. Each XML file may have a target namespace unique to that file, or it’s content may be defined independent of any targetnamespace. In the latter case, however, content residing in an XML Schema without a namespace may be ‘coerced’ into another Schemas namespace.
Federal XML authors should be aware that a target namespace may apply to one or more XML Schema files. In the context of this document, the only case in which a namespace extends beyond the bounds of one file is in internal XML Schema modules. Per rule [NMS1] internal XML Schema modules are NOT required to declare a targetnamespace. In all other cases, versioning of a namespace should equate with versioning the XML Schema file that declares that namespace.
3.6.5.1 Common Complex Data Elements XML Schema Modules
As noted earlier in this document (section 3.5), each major version of a federal XML Schema should be separated into it’s own unique namespace.
[NMS8]
Each Federal and Agency Common Complex Data Elements XML Schema Module major version MUST reside in its own namespace.

[NMS9]
Each Federal and Agency Common Complex Data Elements XML Schema Module MUST be represented by the token "CCD[agencyid][majorversion][minorversion]".

Federal XML Schema modules will be easily distinguishable from Agency XML Schema modules through both namespaces and the addition of agency identifiers [agencyid] to namespace token strings.

3.6.5.2 Common Simple Data Elements XML Schema Modules
To facilitate imrpoved organization of federal XML Schema content, each agency should group simple data elements together in a single common XML Schema module. As noted earlier in this document, this XML Schema should align with the versioning strategy
[NMS10]
Each Federal and Agency Common Simple Data Elements XML Schema Module major version MUST reside in its own namespace.

To facilitate a consistent method of defining target namespace prefixes within each XML Schema, federal agencies should
[NMS11]
Each Common Simple Data Elements XML Schema module MUST be represented by the token "csd[agencyid][majorversion][minorversion]".

3.6.5.3 Unqualified Datatype XML Schema Modules
[NMS12]
Each Federal and Agency Unqualified Datatype XML Schema module major version MUST reside in its own namespace.

[NMS13]
Each Federal and Agency Unqualified Datatype XML Schema module namespace MUST be represented by the token "udt[agencyid][majorversion][minorversion]".

3.6.5.4 Qualified Datatype XML Schema Modules
[NMS14]
Each Federal and Agency Qualified Datatypes XML Schema module MUST reside in its own namespace.

[NMS15]
Each Federal and Agency Qualified Datatypes XML Schema module namespace MUST be represented by the token "qdt[agencyid][majorversion][minorversion]".

3.6.5.5 Code and Identifier List XML Schema Modules
[NMS16]
Each CodeList XML Schema module MUST be maintained in a separate namespace.

3.7 Documentation

3.7.1 Annotation
Federal XML Schema authors must use care when using the xsd:annotation element. Although the leaf xsd:documentation element discussed in the next section provides no problems, the leaf xsd:appInfo provides significant security risks and must not be used.

[GXS12]
Federal and agency schemas SHOULD NOT use xsd:appinfo. If used, xsd:appinfo MUST only be used to convey non-normative information
3.7.2 Embedded Documentation

When developing XML Schemas, federal agencies should provide adequate documentation as outlined in this document. Upon deployment of these XML Schemas to runtime IT environments (test systems, production systems, ets.) agencies may choose to remove all documentation embedded in an XML Schema by processing it against an XSLT script available for use by any federal resource.
When an agency is embarking on the development of any type of application integration (using Web services, for example) it should provide a ‘version’ of the XML Schema that is devoid of documentation. This documentation can be removed by a simple software application such as the use of an XSLT script.

Removal of XML Schema documentation will, in many cases, improve performance. In some cases, a significant performance benefit will be realized.
[GXS2]
Federal and Agency XML Schema SHOULD provide two normative XML Schemas for each transaction, one of which is fully annotated and the other of which is a run-time XML Schema devoid of documentation.

[DOC1]
The xsd:documentation element for every Datatype MUST contain a structured set of annotations in the following sequence and pattern:

ComponentType (mandatory): The type of component to which the object belongs. For Datatypes this must be “DT”.

DictionaryEntryName (mandatory): The official name of a Datatype.

Version (optional): An indication of the evolution over time of the Datatype.

Definition (mandatory): The semantic meaning of a Datatype.

ObjectClassQualifier (optional): The qualifier for the object class.

ObjectClass (optional): The Object Class represented by the Datatype.

RepresentationTerm (mandatory): A Representation Term is an element of the name which describes the form in which the property is represented.

DataTypeQualifier (optional): semantically meaningful name that differentiates the Datatype from its underlying Core Component Type.

DataType (optional): Defines the underlying, fundamental data type.

[DOC2]
A Datatype definition MAY contain one or more Content Component Restrictions to provide additional information on the relationship between the Datatype and its corresponding Core Component Type. If used, the Content Component Restrictions must contain a structured set of annotations in the following patterns:

RestrictionType (mandatory): Defines the type of format restriction that applies to the Content Component.

RestrictionValue (mandatory): The actual value of the format restriction that applies to the Content Component.

ExpressionType (optional): Defines the type of the regular expression of the restriction value.

[DOC3]
A Qualified Datatype definition MAY contain one or more allowed metadata attribute restrictions to provide additional information on the relationship between the Datatype and its corresponding unqualified Datatype. If used the metadata Restrictions must contain a structured set of annotations in the following patterns:

MetadataAttributeName (mandatory): Identifies the metadata attribute on which the restriction applies.

RestrictionValue (mandatory, repetitive): The actual value(s) that is (are) valid for the metadata attribute

[DOC4]
The xsd:documentation element for every simple data element MUST contain a structured set of annotations in the following sequence and pattern:

DictionaryEntryName (mandatory): The ISO 11179 conformant name.

Version (optional): An indication of the evolution over time of the simple data element.

Definition(mandatory): The semantic meaning of the simple data element.

Cardinality(mandatory): Indication whether the simple data element represents a not-applicable, optional, mandatory and/or repetitive characteristic of higher level aggregates.

ObjectClassQualifier (optional): The qualifier for the object class.

ObjectClass(mandatory): The Object Class of which the simple data element is a property of.

PropertyTermQualifier (optional): The qualifier for the property term.

PropertyTerm(mandatory): Property Term represents the distinguishing characteristic or Property of the Object Class and shall occur naturally in the definition of the simple data element.

RepresentationTerm (mandatory): A Representation Term describes the form in which the simple data element is represented.

DataTypeQualifier (optional): semantically meaningful name that differentiates the Qualified Datatype of the simple data element from its underlying Unqualified Datatype.

DataType (mandatory): Defines the Datatype used for the simple data element.

AlternativeBusinessTerms (optional): Any synonym terms under which the Simple data element is commonly known and used in the business.

Examples (optional): Examples of possible values for the Simple data element.
[DOC5]
The xsd:documentation element for every complex data element representing a class MUST contain a structured set of annotations in the following sequence and pattern:

ComponentType (mandatory): The type of component to which the object belongs. For classes, this must be “complex data element”.

DictionaryEntryName (mandatory): The official name of the complex data element.

Version (optional): An indication of the evolution over time of the complex data element.

Definition(mandatory): The semantic meaning of the complex data element.

ObjectClassQualifier (optional): The qualifier for the object class.

ObjectClass(mandatory): The Object Class represented by the complex data element.

AlternativeBusinessTerms (optional): Any synonym terms under which the Complex data element is commonly known and used in the business.

[DOC6]
The xsd:documentation element for every Association Property element declaration MUST contain a structured set of annotations in the following sequence and pattern:

AssociationType (mandatory): The nature of the association to which the object belongs.

DictionaryEntryName (mandatory): The official name of the Association Property.

Version (optional): An indication of the evolution over time of the Association Property.

Definition (mandatory): The semantic meaning of the Association Property.

Cardinality (mandatory): Indication whether the Association Property represents an optional, mandatory and/or repetitive assocation.

ObjectClass (mandatory): The Object Class containing the Association Property.

PropertyTermQualifier (optional): A qualifier is a word or words which help define and differentiate the Association Property.

PropertyTerm(mandatory): The nature of the association between the two complex data elements.

AssociatedObjectClassQualifier (optional): Associated Object Class Qualifiers describe the 'context' of the relationship with another complex data element.

AssociatedObjectClass (mandatory); Associated Object Class is the Object Class at the other end of this association. It represents the child Class contained by the property of the parent class.

[DOC7]
In addition to the data required by rule DOC5, the xsd:documentation element for each federal level XML Schema root element MUST contain a structured set of annotations in the following sequence and pattern:

[S65]
Stored Registry Classes shall include a Unique Identifier.

[S66]
Stored Registry Classes shall include a Version number to keep track of the evolution over time of a Registry Class.

[S67]
Stored Registry Classes shall include a Dictionary Entry Name.

[S68]
Stored Registry Classes shall include a Definition.

[S69]
Stored Registry Classes may include one or more Usage Rules, describing how and/or when to use the Registry Class.

[S70]
Except for the first Version of a Registry Class, each stored Version shall be linked to its previous Version.

[S71]
Except for the last Version of a Registry Class, each stored Version shall be linked to its next Version.

[S72]
Stored Registry Classes shall include the history of the status lifecycle of each Version.

3.7.3 Status (mandatory): Status of the Registry Management Information

3.7.3.1 Administrative Information

[S73]
Stored Registry Classes shall contain administrative information and shall include the following Attributes:

· Registrar (mandatory): Name of the responsible person who has created the Registry Class in the registry

· Registration Authority (mandatory): Organisation authorised to register the Registry Class.

· Submitting Organization (mandatory): The organisation that has submitted / requested the Registry Class.
3.7.3.2 Status Information

[S74]
Stored Registry Classes shall contain status information to include the following Attributes:

· Status (mandatory): Status of the Registry Class (i.e. draft, provisionally registered, registered, to be retired, retired, ...)

· Start Date (mandatory): Date on which the status comes into effect

· Reason (optional): Description of why the Registry Class status has been changed.

· Reference (optional, repetitive): External Document(s) containing relevant information about the status change.

· Comment (optional, repetitive): Remark about the Registry Class status.

3.7.3.3 Change History

[S75]
Stored Registry Classes shall include the history of all modifications related to each Version to include the following Attributes:

· Change Type (mandatory): Purpose of the Change(such as new element, new version, element modification, status modification, element replacement.

· Change Date (mandatory): Date on which the modification has been made.

· Change Description (mandatory): Description of why and how the Registry Class has been modified.

· Request By (mandatory): Name of the organisation that has requested the modification of the Registry Class.
· Request Date (mandatory): Date on which the modification was requested.

· Comment (optional, repetitive): Remark about the Registry Class modification.

· Reference (optional, repetitive): External Document(s) containing relevant information about the modification.

3.7.3.4 Replacement Information

[S76]
For each stored pair of Registry Classes where one Registry Class replaces the other, the stored information shall specify Replacement Information to include the following Attributes:

· Replacement Description (mandatory): Reason for the Registry Class being replaced

· Replacement Date (mandatory): Date from which the replacement is effective.

[S77]
If another Registry Class has replaced a Registry Class, it shall be linked to the Registry Class by which it has been replaced.

[S78]
If a Registry Class replaces one or more other Registry Class(es), it shall be linked to the Registry Class(es) it replaces

3.7.4 Content Information
3.7.4.1 Descriptive Information

[S79]
Stored Registry Classes may include additional descriptive information to include the following Attributes:

· Comments (optional, repetitive): Comments is additional information about a Registry Class, which is not part of the Definition but that is considered relevant for clarification.

· Reference Document (optional, repetitive): Reference Document is a reference (e.g. a Uniform Resource Locator) to external documentation that contains relevant additional information about a Registry Class.

· Acronym (optional, repetitive): Acronym is an abbreviation or code under which the Registry Class is commonly known.

· Keyword (optional, repetitive): Keyword is one or more significant words used for the search and retrieval of a Registry Class.

3.7.4.2 Representation Information

[S80]
Stored Registry Classes may optionally include information about the representation of the Registry Class in one or more syntaxes to include the following Attributes.

· Representation Syntax (mandatory): Identification of the representation syntax

· Representation (mandatory): Physical representation of the Registry Class (e.g. Extensible Markup Language tag)

· Constraint (optional, repetitive): Description of additional constraints that apply to the representation of the Registry Class in the given syntax (e.g. maximum length)

3.7.4.3 Association Information

[S81]
Stored Registry Classes shall include all associations they have with other stored Registry Classes and shall include the following Attributes:

· Association Name (mandatory): Name of the association

· Association Description (mandatory): Descriptive text explaining the meaning of the association

· Association Type (mandatory): Type of association (e.g. aggregation, specialisation, generalization, simple association ...)

· Association Multiplicity (mandatory): Cardinality of the association (i.e. optional/mandatory and repetition)

· Start Date (mandatory): Date at which the association becomes valid

· End Date (optional): Date from which the association is no longer valid

· Comment (optional, repetitive): Relevant information about the association (e.g. reason why it has been removed, ...)

· [ED. NOTE: Per the 9/12/2005 meeting “agreement on the preferences and optionality. Will add language explaining the preference and define the options along with the cautions”]

4 Naming XML Constructs
4.1 General Naming Rules

4.1.1 Syntax Neutral Naming Rules

A naming convention is necessary to gain consistency in the naming and defining of all federal data elements. Such a convention facilitates comparison during the discovery and analysis process, and helps to eliminate ambiguity during the process of data harmonization between disparate organizations, such as the development of multiple complex data elements with different names that have the same semantic meaning.
The naming convention put forth in this document is derived from the guidelines and principles described in ISO 11179 Part 5 -- Naming and Identification Principles For Data Elements. In certain instances, these guidelines have been adapted to the XML environment.

One of the properties of a data element that this document refers to below is a ‘Dictionary Entry Name’. A dictionary entry name is a unique definition of a business concept that is meant to be agreed to by all federal agencies adhering to the rules and guidance outlined in this document. All official dictionary entries will be in English. Due to the growing exchange of data between federal agencies and coalition partners, an authoritative source that will ensure absolute clarity and understanding of the names and definitions is required. The Oxford English Dictionary is that authoritative source. Specifically, Oxford English Dictionary American spellings will be used as the primary source.
As a whole, federal dictionary entry names correspond to a supplementary, controlled vocabulary of Object Classes, Property Terms, and Qualifiers will be developed to identify the definition to be used for any words that are potentially ambiguous. This Controlled Vocabulary shall also be used to identify the preferred word in cases where more than one word might be used to cover the same definition. The Controlled Vocabulary will also contain terms not found in the Oxford English Dictionary. This will ensure that each word within any of the names and definitions is used in a consistent and unambiguous way. The resultant semantic integrity will also mean that translation into other languages retains the precise original meaning.
4.1.1.1 Dictionary Information

Each data element contains the following dictionary information that is impacted by the naming rules in subsequent sub-sections:

· Dictionary Entry Name (Mandatory). This is the unique official name of the Data Element in the dictionary.

· Definition (Mandatory). This is the unique Business Semantic of that Data Element.

· Business Term (Optional). This is a synonym term under which the data Element is commonly known and used in the business. A Data Element may have several Business Terms or synonyms.

[Example]

Dictionary Entry Name – Person. Tax. Identifier
Definition – The registered national tax identification of a person

Business Term – Income tax number, national register number, personal tax register number, social security number, national insurance number

The naming rules are also based on the following concepts as defined in ISO 11179:

· Object Class. This represents the logical data grouping or aggregation (in a logical data model) to which a Property belongs. The Object Class is expressed by an Object Class Term. The Object Class thus is the part of a Dictionary Entry Name of the Data Element that represents an activity or object in a specific Context. Object Classes have explicit boundaries and meaning and their Properties and behaviour follow the same rules.

· Property Term. This represents the distinguishing characteristic or Property of the Object Class and shall occur naturally in the definition.

· Representation Term. An element of the Data Element name which describes the form in which the Data Element is represented.

· Qualifier Term. A word or words which help define and differentiate a Data Element from its other related Data Elements.
4.1.1.2 General Rules
The official language for submissions to Core.gov is English. All official entries should be made in English. In order to ensure absolute clarity and understanding of the names and definitions it is essential to use words from the Oxford English Dictionary. A supplementary Controlled Vocabulary will be developed to identify the definition to be used for any words that are potentially ambiguous. This Controlled Vocabulary shall also be used to identify the preferred word in cases where more than one word might be used to cover the same definition. The Controlled Vocabulary will also contain terms not found in the Oxford English Dictionary. This will ensure that each word within any of the names and definitions is used in a consistent and unambiguous way. The resultant semantic integrity will also mean that translation into other languages retains the precise original meaning.
[DEN1]
The dictionary content, with the exception of Business Terms, shall be in the English Language following the primary Oxford English Dictionary American spellings to assure unambiguous spelling.

4.1.1.3 Rules for Definitions

 [DEN2]
The definition shall be consistent with the requirements of ISO 11179-4 Section 4 and will provide an understandable meaning, which should also be translatable to other languages.

 [DEN3]
The definition shall take into account the fact that the users of the Data Elements are not necessarily native English speakers. It shall therefore contain short sentences, using normal words. Wherever synonym terms are possible, the definition shall use the preferred term as identified in the Controlled Vocabulary.
[DEN4]
The definition of a Simple Data Element shall use a structure that is based on the existence of the Object Class Term, the Property Term, the Data Type, and any Qualifiers.
[DEN5]
The definition of an Association between Complex Data Elements shall use a structure that is based on the existence of the Object Class Term of the associating Complex Data Element, the Property (nature of the association), and the Object Class Term of the associated Complex Data Element and any Qualifiers.
[DEN6]
Whenever both the definite (i.e. the) and indefinite article (i.e. a) are possible in a definition, preference shall be given to an indefinite article (i.e. a).

[Note]

To verify the quality of the definition, place the Dictionary Entry Name followed by is before the definition to ensure that it is not simply a repetition of the Dictionary Entry Name.
4.1.1.4 Rules for Dictionary Entry Names

[DEN7]
The Dictionary Entry Name shall be unique.

[DEN8]
The Dictionary Entry Name shall be extracted from the definition.

[DEN9]
The Dictionary Entry Name shall be concise and shall not contain consecutive redundant words.

[DEN10]
The Dictionary Entry Name and all its components shall be in singular form unless the concept itself is plural.

[Example]

The singular Good does not exist, whereas Goods is a plural noun whose concept involves one or multiple (plural) items

[DEN11]
The Dictionary Entry Name shall not use non-alphanumeric characters unless required by language rules. Numeric characters should not be used for sequencing.

Instead of days of the week, use week days.
[DEN12]
The Dictionary Entry Name shall contain verbs, nouns and adjectives (i.e. no words like and, of, the, etc.) only when it is natural to do so.

[DEN13]
Abbreviations and acronyms that are part of the Dictionary Entry Name shall be expanded or explained in the definition.

[DEN14]
The Object Class Term, Property Term, and Representation Term components of a Dictionary Entry Name shall be separated by dots. The space character shall separate words in multi-word Object Class Terms and/or multiword Property Terms, including their Qualifier Terms. Every word shall start with a capital letter. Qualifier Terms shall be separated from their associated Object Class or Property Term by an underscore (_) followed by a space to separate each qualifier. To allow spell checking of the words in the Dictionary Entry Name, a space character shall follow the dots after Object Class Term(s) and Property Term(s).

[DEN15] Qualifier Terms shall precede the associated Object Class Term or Property Term. The order of qualifiers shall not be used to differentiate Dictionary Entry Names.

[DEN16]
The Dictionary Entry Name of a Simple Data Element shall consist of the following parts in the order specified:

the Object Class Term of the owning the corresponding Basic Core Component Property,

the Property Term of the corresponding class property, and

the Representation Term of the Data Type

any Qualfiying Terms
[Example]

Tax. Description. Text

 [DEN17]
The Dictionary Entry Name of an Complex Data Element Association shall consist of the following components in the specified order:

the Object Class Term of the Complex Data Element owning the corresponding Association Property,

the Property Term of the corresponding Association Property,

the Object Class Term of the Complex Data Element on which the corresponding Association Core Component Property is based, and

Any Qualifying Terms.

[Example]

Person. Residence. Address

 [DEN18]
The components of a Dictionary Entry Name shall be separated by dots. The space character shall separate words in multi-word Object Class Terms and/or multi-word Property Terms. Every word shall start with a capital letter. To allow spell checking of the Directory Entry Names’ words, the dots after Object Class Terms and Property Terms shall be followed by a space character.

 [Note]

The use of CamelCase for Dictionary Entry Names has been considered, but has been rejected for following reasons:

 • Use of CamelCase will not allow the use of spell checkers

 • Strict use of CamelCase makes it impossible to use separators (“.”) and
 therefore doesn’t allow an unambiguous identification of the
 composing parts of the Dictionary Entry Name.
[DEN19]
The name of an Object Class shall always have the same semantic meaning throughout the dictionary and may consist of more than one word.

[DEN20]
The name of a Property Term shall occur naturally in the definition and may consist of more than one word. A name of a Property Term shall be unique within the Context of an Object Class but may be reused across different Object Classes.

[Example]

Car. Color. Code and Shirt. Color. Code may both exist.

[DEN21]
 The Dictionary Entry Name of an Complex Data Type shall consist of a meaningful Object Class Term. The Object Class Term may consist of more than one word.

[Example]

Postal Address. Party
XML Naming Rules
[GNR1]
XML element, attribute and type names MUST be in the English language, using the primary American spellings provided in the Oxford English Dictionary for writers and editors.

[GNR2]
XML element, attribute and type names MUST be consistently derived from ISO 11179 conformant dictionary entry names.

[GNR3]
XML element, attribute and type names constructed from dictionary entry names MUST NOT include periods, spaces, other separators, or characters not allowed by W3C XML 1.0 for XML names.

[GNR4]
XML element, attribute, and simple and complex type names MUST NOT use acronyms, abbreviations, or other word truncations, except those in the list of exceptions published in Appendix XX.

[GNR5]
Acronyms and abbreviations MUST only be added to the federal approved acronym and abbreviation list after careful consideration for maximum understanding and reuse.

[GNR6]
The acronyms and abbreviations listed in Appendix XX MUST always be used.

[GNR7]
XML element, attribute and type names MUST be in singular form unless the concept itself is plural.

[GNR8]
The UpperCamelCase (UCC) convention MUST be used for naming elements and types.

[GNR9]
The lowerCamelCase (LCC) convention MUST be used for naming attributes.

4.2 Type Naming Rules

4.2.1 Complex Type Names for Complex Data Elements

[CTN1]
An xsd:complexType name based on a complex data element MUST be the Dictionary Entry Name with the separators removed and with with the suffix "Type" appended following the upper camel case convention.

4.2.2 Complex Type Names for Simple Data Elements

[CTN2]
An xsd:complexType name based on a Simple Data Element MUST be the Simple Data Element Dictionary Entry Name with the separators removed and with the "Type" suffix appended after the representation term.

4.2.3 Type Names for Unqualified Datatypes

4.2.3.1 Complex Type Names

[CTN3]
An xsd:complexType for a unqualified datatype MUST have the name of the corresponding ccts:CoreComponentType, with the separators removed and with the "Type" suffix appended.

4.2.3.2 Simple Type Names

[STN1]
Each xsd:simpleType definition name MUST be the datatype dictionary entry name with the separators removed.

4.2.4 Type Names for Qualified Datatypes

4.2.4.1 Complex Type Names

4.2.4.2 Simple Type Names

4.2.5 Type Names for Codes and Identifiers

4.2.5.1 Complex Type Names

4.2.5.2 Simple Type Names

4.3 Element Naming Rules

4.3.1 Element Names for Complex Data Elements

4.3.1.1 Element Names for Simple Data Elements

4.3.1.2 Element Names for Associations

4.4 Attribute Naming Rules

[ATN1]
Each xsd:attribute "name" MUST be an ISO 11179 conformant dictionary entry name object class, property term and representation term with any separators removed.

5 Declarations and Definitions

5.1 Type Definitions

5.1.1 General Type Definitions

The XML Schema language allow for the definition of complex types within a element. In such cases, these complex types are defined ‘locally’ from the perspective of the elements using them and they are not given specific names.

To promote the development of an federal XML Schema library that lends itself to reuse over time, XML Schema authors should develop content so that the complex types are defined globally. Global definition of complex types will ensure that each type has a unique name (in conjunction with its associated XML Schema namespace) and can be used freely by other XML Schema content.
[GTD1]
All types MUST be named.

5.1.2 Simple Type Definitions

[STD1]
For every datatype whose metadata components map directly onto the properties of a built-in xsd:DataType, the datatype MUST be defined as a named xsd:simpleType in the fed:unqualifiedDatatype XML Schema module.

[ED. NOTE: Per the 9/12/2005 meeting “Need to fix simple type definitions under the Simple DE Type]
5.1.3 Complex Type Definitions

[CTD1]
For every complex and simple data element identified in a Federal or Agency data centric process model, a named xsd:complexType MUST be defined.

[CTD2]
Every complex data element xsd:complexType definition content model for data-centric XML Schema MUST use the xsd:sequence element with appropriate global element references to reflect each simple data element (property) that constitute its content model.

[CTD3]
Every simple data element xsd:complexType definition content model MUST use the xsd:simpleContent element.

[CTD4]
Every simple data element xsd:complexType content model xsd:simpleContent element MUST consist of an xsd:extension element.

[CTD5]
Every simple data element xsd:complexType content model xsd:base attribute value MUST be an unqualified or qualified federal datatype as appropriate.

[CTD6]
For every datatype used in a data model, a named xsd:complexType or xsd:simpleType MUST be defined.

[CTD7]
All defined or used unqualified datatypes MUST either be those defined in the Unqualified Datatype XML Schema Module from UN/CEFACT, the federal Unqualified Datatype XML Schema Module, or an Agency Unqualified Datatype XML Schema Module.

[CTD8]
Each unqualified Datatype xsd:complexType must be based on its corresponding source xsd:complexType. Note: If we don’t use CTD7, then we need CTD8. If we use CTD7, then we don’t need CTD8.
[CTD9]
Every qualified Datatype whose corresponding unqualified datatype is defined as an xsd:complexType MUST also be defined as an xsd:complexType and MUST be based on the same xsd:simpleType.
[CTD10]
Every qualified Datatype whose corresponding unqualified datatype is defined as an xsd:simpleType MUST also be defined as an xsd:simpleType and MUST be based on the same xsd:simpleType.
[CTD11]
Each unqualified Datatype xsd:complexType definition must contain one xsd:simpleContent element.

[CTD12]
For every datatype whose metadata components are not equivalent to the properties of a built-in xsd:Datatype, it MUST be defined as a named xsd:complexType in the Unqualified Datatype XML Schema module.

[CTD13]
The Unqualified Datatype xsd:complexType definition xsd:simpleContent element MUST contain one xsd:extension element. This xsd:extension element MUST include an xsd:base attribute that defines the specific xsd:Built-inDatatype required.

[CTD14]
Each metadata component xsd:attribute "type" MUST define the specific xsd:Built-in Datatype or the user defined xsd:simpleType for the metadata component of the unqualified Datatype.

[CTD15]
Each metadata component xsd:attribute "use" MUST define the occurrence of that metadata component as either "required", or "optional".

5.1.3.1 Content Models

5.1.3.1.1 Sequence

5.1.3.1.2 xsd:all
[GXS8]
The xsd:all element MUST NOT be used in data centric XML Schema.

5.1.3.1.3 xsd:choice

[GXS9]
The xsd:choice element SHOULD NOT be used where customisation and extensibility are a concern.
5.1.3.1.4 xsd:include

[GXS10]
The xsd:include feature MUST only be used within a root XML Schema.
5.1.3.1.5 xsd:union

[GXS11]
The xsd:union technique MUST NOT be used except for Code and Identifier Lists. The xsd:union technique MAY be used for Code and Identifier Lists.
5.1.3.1.6 xsd:any
To promote data interoperability across government agencies, it is critical that federal XML Schemna data types be defined in a structured manner
[GTD2]
The xsd:any data type MUST NOT be used.
5.2 Element Declarations
5.2.1 Global and Local Elements

5.2.2 Elements Bound to Complex Types

[ELD3]
For every complex data element identified in the data model, a global element bound to the corresponding xsd:complexType MUST be declared.

5.2.3 Elements Bound to Simple Types

5.2.4 Elements Representing Associations between Complex Data Elements

[ELD4]
If an association between two complex data elements is unqualified, the association MUST use the global element declared for the associated complex data element. If an association between two complex data elements is qualified, a new global element representing the qualified association MUST be declared and used.
5.2.5 Elements Bound to Datatypes

[ELD5]
For each datatype SimpleType definition, an xsd:restriction element MUST be declared.

5.2.6 Elements representing Code Lists and Identifier Lists

[ELD6]
Code list and Identifier List xsd:import elements MUST contain the namespace and XML Schema location attributes.

5.2.7 Empty Elements

The XML Schema language makes it possible to define elements so that they do not (in the conforming XML instance) contain any content between the opening and closing tag of the element. Rather, attributes alone are used to carry data for the element.

Figure – illustrates how this might appear in an XML instance.

Figure ---

<ContactInformation>
<PrimaryContact eMail=primary.contact@eMail.com contactID=”1”/>

<SecondaryContact eMail=secondary.contact@eMail.com contactID=”2”/>

< ContactInformation>
In this case, it may not make good design sense to place the primary contact eMail address on the parent element (‘EMailAddresses’ in this example). Rather, the eMail address and contact ID of each item within contact information is carried within the otherwise empty element.
As such, empty elements should be used only when it is not possible for an XML Schema author to define attributes on a containing element and the otherwise empty element is used to carry attribute content.
[ELD7]
Empty elements SHOULD not be declared.
While there may be circumstances in which an otherwise empty element may be used to carry attribute values, agencies should always avoid the use of elements that are entirely devoid on any content.

Figure --- illustrates how this would appear in an XML instance document. The ‘PimaryContact’ element does not contain any data content whatsoever.

Figure ---

<ContactInformation>
<PrimaryContact/>
< ContactInformation>
[IND5]
Data centric instance documents MUST NOT contain an element devoid of content or null values.

Conversely, XML Schema implementation guides must not indicate that if data is not present, a particular meaning is conveyed.
[IND6]
The absence of a construct or data in an instance document MUST NOT carry meaning.

5.2.8 XSD:Any Elements

Since the goal of this document is to decrease the effort required to achieve interoperability, it is important that clear guidance be established regarding the use of the xsd:any element. The xsd:any element makes it possible for XML Schema authors to allow any type of XML content to be passed within a specific part of an XML instance document that conforms to the relevant XML Schema.

As such, the any element should be used with caution and only in those circumstances in which the XML content it is meant to control will not need to be validated by the receiving system(s).
 [ELD8]
The xsd:any element SHOULD NOT be used.

5.3 Attribute Declarations

5.3.1 User Defined Attributes

[ATD1]
User defined attributes SHOULD NOT be used in data centric XML Schema. When used, user defined attributes MUST only convey supplemental metadata information from table XX not intended for storage or application processing.

5.3.2 Metadata Attributes

A general discussion here on the role of metadata attributes and their importance. Explain how metadata attributes convey data that is not normally stored. Identify the table in the back that will convey the approved list of metadata attributes (taken from table 8-2 in ISO 15000-5).
5.3.3 Global Attributes

[ATD2]
If a XML Schema Expression contains one or more common attributes that apply to all elements contained or included or imported therein, the common attributes MUST be declared as part of a global attribute group.

Description here.
5.3.4 Attribute Groups
[ATD2]
If a XML Schema Expression contains one or more common attributes that apply to all elements contained or included or imported therein, the common attributes MUST be declared as part of a global attribute group.

Description here.
5.3.5 XML Schema Location

[ATD3]
Each xsd:XML SchemaLocation attribute declaration MUST contain a system-resolvable URL. This system resolvable URL SHOULD be persistent and accessable from any query. If the system resolvable URL is not made publicly available, it SHOULD be a relative URL referencing the location of the XML Schema or XML Schema module in the release package.

5.3.6 XSD:Nil

[ATD4]
The xsd built in nillable attribute MUST NOT be used for data centric XML Schema that require authentication and nonrepudiation

5.3.7 XSD:anyAttribute
 [ATD5]
The xsd:anyAttribute MUST NOT be used for data centric XML Schema. The xsd:anyAttribute MAY be used for document-centric XML Schema if consistency in not an issue.

6 Extending and Restricting Types

[GXS13]
Complex Type extension or restriction MAY be used where appropriate.

6.1 Guidelines for Extension
6.2 Guidelines for Restriction

6.3 Xsd:SubstitutionGroup

[GXS5]
The xsd:SubstitutionGroups feature Should NOT be used In data centric XML Schema. If used, it should only be used in user defined customization XML Schema or when extending Agency or Federal XSD components.

6.4 xsd:final

[GXS6]
The xsd:final attribute SHOULD be used where appropriate to control undesireable extensions.

7 Code Lists and Identifier Lists

[CIL1]
All Codes and Identifiers MUST be part of an Agency or externally maintained Code List.

[CIL2]
Agency Libraries MUST identify and use external standardized code and Identifier lists when available rather than develop their own native code lists.

[CIL3]
Agency Libraries MAY design and use an internal code or identifier list where an existing external code or identifier list needs to be extended, or where no suitable external code or identifier list exists.

[CIL4]
All Federal or Agency maintained or used Code and Identifier Lists MUST be enumerated using the Federal Code and Identifier List XML Schema Module Template.

[CIL5]
The name of each Federal or Agency Code or Identifier List XML Schema Module MUST be of the form: {Owning Organization}{Code or Identifier List Name}{Code List XML Schema Module}

[CIL6]
An xsd:import element MUST be declared for every code or identifier list required in a root XML Schema.

[CIL7]
Users of the Federal or Agency Library MAY identify any subset they wish from an identified code or identifier list for their own trading community conformance requirements.

[CIL8]
The xsd:XML SchemaLocation declaration for code and identifier list XML Schema modules MUST include the complete URI used to identify the relevant XML Schema.

8 Using XML Schematron

9 Miscellaneous XSD Rules

9.1 xsd:simpleType

[GXS3]
Built-in xsd:simpleType SHOULD be used wherever possible.
9.2 Namespace Declaration

[GXS4]
All W3C XML Schema constructs in federal and Agency XML Schema and XML Schema modules MUST contain the following namespace declaration on the xsd XML Schema element: xmlns:xsd="http://www.w3.org/2001/XMLXML Schema"
9.3 xsd:notation

[GXS7]
xsd:notations MUST NOT be used.

9.4 xsd:appinfo

[GXS12]
Federal or Agency XML Schema MUST NOT use xsd:appinfo.

9.5 xsd:key and xsd:keyRef

10 XML Instances
10.1 Validation

An XML instance is well-formed if it conforms to XML 1.0 It is valid if it conforms to a supporting DTD or XML Schema. To ensure consistency, federal XML must necessarily be well formed and valid. As XSD is defined as the normative form for XML Schema expressions for the federal government, by default, every federal XML instance must have a supporting fully conformant XSD XML Schema.

[IND1]
All instance documents MUST validate to a corresponding XSD XML Schema.

10.2 Character Encoding

XML Instances can be expressed in several different character encodings. To ensure consistency, Federal XML instances should clearly identify the character encoding being used.

[IND2]
Instance documents MUST always identify their character encoding with the XML declaration

At the International level, consensus has been reached between the four de jure standards bodies as the preferred character set encoding for XML instance documents to facilitate interoperability. This consensus is expressed in ISO/IETF/ITU/UNCEFACT Memorandum of Understanding Management Group (MOUMG) Resolution 01/08 (MOU/MG01n83) which calls for the use of UTF-8. Federal XML instances should follow these guidelines.

[IND3]
In conformance with ISO/IETF/ITU/UNCEFACT Memorandum of Understanding Management Group (MOUMG) Resolution 01/08 (MOU/MG01n83), all federal or Agency XML SHOULD be expressed using UTF-8.

10.3 Root Element

[RED1]
Every instance document must use the global element defined as the root element in the XML Schema as its root element.

10.4 XML Schema Instance Attribute Namespace Declaration
The XML Schema Specification provides for attributes that are commonly used in instance documents but that do not appear in a XML Schema. These attributes belong to a specific namespace. To ensure consistency, this namespace will be declared in each Federal XML instance.

[IND4]
All instance documents MUST contain the following namespace declaration in the root element: xmlns:xsi="http://www.w3.org/2001/XMLXML Schema-instance

Appendix A. Federal XML Naming and Design Rules Checklist

This Appendix contains a checklist of all Fedral XML Naming and Design rules in rule category alphabetical order as follows:
· Attribute Declaration Rules (ATD)

· Attribute Naming Rules (ATN)

· Code and Identifier List Rules (CIL)

· ComplexType Definition Rules (CTD)

· ComplexType Naming Rules (CTN)

· Data Element Dictionary Entry Names and Definitions (DEN)
· Documentation Rules (DOC)

· Element Declaration Rules (ELD)

· General Naming Rules (GNR)

· General Type Definition Rules (GTD)

· General XML Schema Rules (GXS)

· Instance Document Rules (IND)

· Modeling Constraints Rules (MDC)

· Naming Constraints Rules (NMC)

· Namespace Rules (NMS)

· Root Element Declaration Rules (RED)

· XML Schema Structure Modularity Rules (SSM)

· Standards Adherence Rules (STA)

· SimpleType Naming Rules (STN)

· SimpleType Definition Rules (STD)

· Versioning Rules (VER)

	A.1 Attribute Declaration Rules

	[ATD1]
	User defined attributes SHOULD NOT be used in data centric XML Schema. When used, user defined attributes MUST only convey supplemental metadata information from table XX not intended for storage or application processing.

	[ATD2]
	If a XML Schema Expression contains one or more common attributes that apply to all elements contained or included or imported therein, the common attributes MUST be declared as part of a global attribute group.

	[ATD3]
	Each xsd:XML SchemaLocation attribute declaration MUST contain a system-resolvable URL. This system resolvable URL SHOULD be persistent and accessable from any query. If the system resolvable URL is not made publicly available, it SHOULD be a relative URL referencing the location of the XML Schema or XML Schema module in the release package.

	[ATD4]
	The xsd built in nillable attribute MUST NOT be used for data centric XML Schema that require authentication and nonrepudiation

	[ATD5]
	The xsd:anyAttribute MUST NOT be used for data centric XML Schema. The xsd:anyAttribute MAY be used for document-centric XML Schema if consistency in not an issue.

	A.2 Attribute Naming Rules

	[ATN1]
	Each xsd:attribute "name" MUST be an ISO 11179 conformant dictionary entry name object class, property term and representation term with any separators removed.

	A.3 Code and Identifier List Rules

	[CIL1]
	All Codes and Identifiers MUST be part of an Agency or externally maintained Code List.

	[CIL2]
	Agency Libraries MUST identify and use external standardized code and Identifier lists when available rather than develop their own native code lists.

	[CIL3]
	Agency Libraries MAY design and use an internal code or identifier list where an existing external code or identifier list needs to be extended, or where no suitable external code or identifier list exists.

	[CIL4]
	All Federal or Agency maintained or used Code and Identifier Lists MUST be enumerated using the Federal Code and Identifier List XML Schema Module Template.

	[CIL5]
	The name of each Federal or Agency Code or Identifier List XML Schema Module MUST be of the form: {Owning Organization}{Code or Identifier List Name}{Code List XML Schema Module}

	[CIL6]
	An xsd:import element MUST be declared for every code or identifier list required in a root XML Schema.

	[CIL7]
	Users of the Federal or Agency Library MAY identify any subset they wish from an identified code or identifier list for their own trading community conformance requirements.

	[CIL8]
	The xsd:XML SchemaLocation declaration for code and identifier list XML Schema modules MUST include the complete URI used to identify the relevant XML Schema.

	A.4 ComplexType Definition Rules

	[CTD1]
	For every complex and simple data element identified in a Federal or Agency data centric process model, a named xsd:complexType MUST be defined.

	[CTD2]
	Every complex data element xsd:complexType definition content model for data-centric XML Schema MUST use the xsd:sequence element with appropriate global element references to reflect each simple data element (property) that constitute its content model.

	[CTD3]
	Every simple data element xsd:complexType definition content model MUST use the xsd:simpleContent element.

	[CTD4]
	Every simple data element xsd:complexType content model xsd:simpleContent element MUST consist of an xsd:extension element.

	[CTD5]
	Every simple data element xsd:complexType content model xsd:base attribute value MUST be an unqualified or qualified federal datatype as appropriate.

	[CTD6]
	For every datatype used in a data model, a named xsd:complexType or xsd:simpleType MUST be defined.

	[CTD7]
	All defined or used unqualified datatypes MUST either be those defined in the Unqualified Datatype XML Schema Module from UN/CEFACT, the federal Unqualified Datatype XML Schema Module, or an Agency Unqualified Datatype XML Schema Module.

	[CTD8]
	Each unqualified Datatype xsd:complexType must be based on its corresponding source xsd:complexType. Note: If we don’t use CTD7, then we need CTD8. If we use CTD7, then we don’t need CTD8.

	[CTD9]
	Every qualified Datatype whose corresponding unqualified datatype is defined as an xsd:complexType MUST also be defined as an xsd:complexType and MUST be based on the same xsd:simpleType.

	[CTD10]
	Every qualified Datatype whose corresponding unqualified datatype is defined as an xsd:simpleType MUST also be defined as an xsd:simpleType and MUST be based on the same xsd:simpleType.

	[CTD11]
	Each unqualified Datatype xsd:complexType definition must contain one xsd:simpleContent element.

	
	

	[CTD12]
	For every datatype whose metadata components are not equivalent to the properties of a built-in xsd:Datatype, it MUST be defined as a named xsd:complexType in the Unqualified Datatype XML Schema module.

	[CTD13]
	The Unqualified Datatype xsd:complexType definition xsd:simpleContent element MUST contain one xsd:extension element. This xsd:extension element MUST include an xsd:base attribute that defines the specific xsd:Built-inDatatype required.

	[CTD14]
	Each metadata component xsd:attribute "type" MUST define the specific xsd:Built-in Datatype or the user defined xsd:simpleType for the metadata component of the unqualified Datatype.

	[CTD15]
	Each metadata component xsd:attribute "use" MUST define the occurrence of that metadata component as either "required", or "optional".

	A.5 ComplexType Naming Rules

	[CTN1]
	An xsd:complexType name based on a class MUST be the Dictionary Entry Name with the separators removed and with with the suffix "Type" appended following the upper camel case convention.

	[CTN2]
	An xsd:complexType name based on a Simple Data Element MUST be the Simple Data Element Dictionary Entry Name with the separators removed and with the "Type" suffix appended after the representation term.

	[CTN3]
	An xsd:complexType for a unqualified datatype MUST have the name of the corresponding ccts:CoreComponentType, with the separators removed and with the "Type" suffix appended.

	A.6 Data Element Dictionary Entry Names and Definitions

	[DEN1]
	The dictionary content, with the exception of Business Terms, shall be in the English Language following the primary Oxford English Dictionary American spellings to assure unambiguous spelling.

	 [DEN2]
	The definition shall be consistent with the requirements of ISO 11179-4 Section 4 and will provide an understandable meaning, which should also be translatable to other languages.

	[DEN3]
	The definition shall take into account the fact that the users of the Data Elements are not necessarily native English speakers. It shall therefore contain short sentences, using normal words. Wherever synonym terms are possible, the definition shall use the preferred term as identified in the Controlled Vocabulary.

	[DEN4]
	The definition of a Simple Data Element shall use a structure that is based on the existence of the Object Class Term, the Property Term, the Data Type, and any Qualifiers.

	[DEN5]
	The definition of an Association between Complex Data Elements shall use a structure that is based on the existence of the Object Class Term of the associating Complex Data Element, the Property (nature of the association), and the Object Class Term of the associated Complex Data Element and any Qualifiers.

	[DEN6]
	Whenever both the definite (i.e. the) and indefinite article (i.e. a) are possible in a definition, preference shall be given to an indefinite article (i.e. a).

	[DEN7]
	The Dictionary Entry Name shall be unique.

	[DEN8]
	The Dictionary Entry Name shall be extracted from the definition.

	[DEN9]
	The Dictionary Entry Name shall be concise and shall not contain consecutive redundant words.

	[DEN10]
	The Dictionary Entry Name and all its components shall be in singular form unless the concept itself is plural.

	[DEN11]
	The Dictionary Entry Name shall not use non-alphanumeric characters unless required by language rules. Numeric characters should not be used for sequencing.

	[DEN12]
	The Dictionary Entry Name shall only contain verbs, nouns and adjectives (i.e. no words like and, of, the, etc.).

	[DEN13]
	Abbreviations and acronyms that are part of the Dictionary Entry Name shall be expanded or explained in the definition.

	[DEN14]
	The Object Class Term, Property Term, and Representation Term components of a Dictionary Entry Name shall be separated by dots. The space character shall separate words in multi-word Object Class Terms and/or multiword Property Terms, including their Qualifier Terms. Every word shall start with a capital letter. Qualifier Terms shall be separated from their associated Object Class or Property Term by an underscore (_) followed by a space to separate each qualifier. To allow spell checking of the words in the Dictionary Entry Name, a space character shall follow the dots after Object Class Term(s) and Property Term(s).

	[DEN15]
	Qualifier Terms shall precede the associated Object Class Term or Property Term. The order of qualifiers shall not be used to differentiate Dictionary Entry Names.

	[DEN16]
	The Dictionary Entry Name of a Simple Data Element shall consist of the following parts in the order specified: the Object Class Term of the owning the corresponding Basic Core Component Property, the Property Term of the corresponding class property, and the Representation Term of the Data Type any Qualfiying Terms

	 [DEN17]
	The Dictionary Entry Name of an Complex Data Element Association shall consist of the following components in the specified order:the Object Class Term of the Complex Data Element owning the corresponding Association Property,the Property Term of the corresponding Association Property, the Object Class Term of the Complex Data Element on which the corresponding Association Core Component Property is based, and Any Qualifying Terms.

	[DEN18]
	The components of a Dictionary Entry Name shall be separated by dots. The space character shall separate words in multi-word Object Class Terms and/or multi-word Property Terms. Every word shall start with a capital letter. To allow spell checking of the Directory Entry Names’ words, the dots after Object Class Terms and Property Terms shall be followed by a space character.

	 [DEN19]
	The name of an Object Class shall always have the same semantic meaning throughout the dictionary and may consist of more than one word.

	[DEN20]
	The name of a Property Term shall occur naturally in the definition and may consist of more than one word. A name of a Property Term shall be unique within the Context of an Object Class but may be reused across different Object Classes.

	[DEN21]
	 The Dictionary Entry Name of an Complex Data Type shall consist of a meaningful Object Class Term. The Object Class Term may consist of more than one word.

	A.7 Documentation Rules

	[DOC1]
	The xsd:documentation element for every Datatype MUST contain a structured set of annotations in the following sequence and pattern:

· ComponentType (mandatory): The type of component to which the object belongs. For Datatypes this must be “DT”.

· DictionaryEntryName (mandatory): The official name of a Datatype.

· Version (optional): An indication of the evolution over time of the Datatype.

· Definition(mandatory): The semantic meaning of a Datatype.

· ObjectClassQualifier (optional): The qualifier for the object class.

· ObjectClass(optional): The Object Class represented by the Datatype.

· RepresentationTerm (mandatory): A Representation Term is an element of the name which describes the form in which the property is represented.

· DataTypeQualifier (optional): semantically meaningful name that differentiates the Datatype from its underlying Core Component Type.

· DataType (optional): Defines the underlying Core Component Type.

	[DOC2]
	A Datatype definition MAY contain one or more Content Component Restrictions to provide additional information on the relationship between the Datatype and its corresponding Core Component Type. If used the Content Component Restrictions must contain a structured set of annotations in the following patterns:

· RestrictionType (mandatory): Defines the type of format restriction that applies to the Content Component.

· RestrictionValue (mandatory): The actual value of the format restriction that applies to the Content Component.

· ExpressionType (optional): Defines the type of the regular expression of the restriction value.

	[DOC3]
	A Qualified Datatype definition MAY contain one or more allowed metadata attribute restrictions to provide additional information on the relationship between the Datatype and its corresponding unqualified Datatype. If used the metadata Restrictions must contain a structured set of annotations in the following patterns:

· MetadataAttributeName (mandatory): Identifies the metadata attribute on which the restriction applies.

· RestrictionValue (mandatory, repetitive): The actual value(s) that is (are) valid for the metadata attribute

	[DOC4]
	The xsd:documentation element for every simple data element MUST contain a structured set of annotations in the following sequence and pattern:

· DictionaryEntryName (mandatory): The ISO 11179 conformant name.

· Version (optional): An indication of the evolution over time of the simple data element.

· Definition(mandatory): The semantic meaning of the simple data element.

· Cardinality(mandatory): Indication whether the simple data element represents a not-applicable, optional, mandatory and/or repetitive characteristic of higher level aggregates.

· ObjectClassQualifier (optional): The qualifier for the object class.

· ObjectClass(mandatory): The Object Class of which the simple data element is a property of.

· PropertyTermQualifier (optional): The qualifier for the property term.

· PropertyTerm(mandatory): Property Term represents the distinguishing characteristic or Property of the Object Class and shall occur naturally in the definition of the simple data element.

· RepresentationTerm (mandatory): A Representation Term describes the form in which the simple data element is represented.

· DataTypeQualifier (optional): semantically meaningful name that differentiates the Qualified Datatype of the simple data element from its underlying Unqualified Datatype.

· DataType (mandatory): Defines the Datatype used for the simple data element.

· AlternativeBusinessTerms (optional): Any synonym terms under which the Simple data element is commonly known and used in the business.

· Examples (optional): Examples of possible values for the Simple data element.

	[DOC5]
	The xsd:documentation element for every complex data element representing a class MUST contain a structured set of annotations in the following sequence and pattern:

· ComponentType (mandatory): The type of component to which the object belongs. For classes, this must be “complex data element”.

· DictionaryEntryName (mandatory): The official name of the complex data element.

· Version (optional): An indication of the evolution over time of the complex data element.

· Definition(mandatory): The semantic meaning of the complex data element.

· ObjectClassQualifier (optional): The qualifier for the object class.

· ObjectClass(mandatory): The Object Class represented by the complex data element.

· AlternativeBusinessTerms (optional): Any synonym terms under which the Complex data element is commonly known and used in the business.

	[DOC6]
	The xsd:documentation element for every Association Property element declaration MUST contain a structured set of annotations in the following sequence and pattern:

· AssociationType (mandatory): The nature of the association to which the object belongs.

· DictionaryEntryName (mandatory): The official name of the Association Property.

· Version (optional): An indication of the evolution over time of the Association Property.

· Definition(mandatory): The semantic meaning of the Association Property.

· Cardinality(mandatory): Indication whether the Association Property represents an optional, mandatory and/or repetitive assocation.

· ObjectClass(mandatory): The Object Class containing the Association Property.

· PropertyTermQualifier (optional): A qualifier is a word or words which help define and differentiate the Association Property.

· PropertyTerm(mandatory): The nature of the association between the two complex data elements.

· AssociatedObjectClassQualifier (optional): Associated Object Class Qualifiers describe the 'context' of the relationship with another complex data element.

· AssociatedObjectClass (mandatory); Associated Object Class is the Object Class at the other end of this association. It represents the child Class contained by the property of the parent class.

	A.8 Element Declaration Rules

	[ELD1]
	Each XML Schema MUST identify one and only one global element declaration that defines the document level container being conveyed in the XML Schema expression. That global element MUST include an xsd:annotation child element which MUST further contain an xsd:documentation child element that declares "This element MUST be conveyed as the root element in any instance document based on this XML Schema expression."

	[ELD2]
	All data-centric element declarations MUST be global. All document-centric element declarations SHOULD be global.

	[ELD3]
	For every complex data element identified in the data model, a global element bound to the corresponding xsd:complexType MUST be declared.

If an association between two complex data elements is unqualified, the association MUST use the global element declared for the associated complex data element. If an association between two complex data elements is qualified, a new global element representing the qualified association MUST be declared and used.
	
	

	[ELD5]
	For each datatype SimpleType definition, an xsd:restriction element MUST be declared.

	[ELD6]
	Code list xsd:import elements MUST contain the namespace and XML Schema location attributes.

	[ELD7]
	Empty elements MUST not be declared.

	[ELD8]
	The xsd:any element MUST NOT be used.

	A.9 General Naming Rules

	[GNR1]
	XML element, attribute and type names MUST be in the English language, using the primary American spellings provided in the Oxford English Dictionary for writers and editors.

	[GNR2]
	XML element, attribute and type names MUST be consistently derived from ISO 11179 conformant dictionary entry names.

	[GNR3]
	XML element, attribute and type names constructed from dictionary entry names MUST NOT include periods, spaces, other separators, or characters not allowed by W3C XML 1.0 for XML names.

	[GNR4]
	XML element, attribute, and simple and complex type names MUST NOT use acronyms, abbreviations, or other word truncations, except those in the list of exceptions published in Appendix XX.

	[GNR5]
	Acronyms and abbreviations MUST only be added to the federal approved acronym and abbreviation list after careful consideration for maximum understanding and reuse.

	[GNR6]
	The acronyms and abbreviations listed in Appendix XX MUST always be used.

	[GNR7]
	XML element, attribute and type names MUST be in singular form unless the concept itself is plural.

	[GNR8]
	The UpperCamelCase (UCC) convention MUST be used for naming elements and types.

	[GNR9]
	The lowerCamelCase (LCC) convention MUST be used for naming attributes.

	A.10 General Type Definition Rules

	[GTD1]
	All types MUST be named.

	[GTD2]
	The xsd:anyType MUST NOT be used.

	A.11 General XML Schema Rules

	[GXS1]
	Data-centric XML Schema MUST conform to the following physical layout as applicable:

· XML Declaration

· <!-- ===== Copyright Notice ===== -->

· Any applicable copyright notice

· <!-- ===== xsd:XML Schema Element With Namespaces Declarations ===== -->

· xsd:XML Schema element to include version attribute and namespace declarations in the following order:

· xmlns:xsd

· Target namespace

· Default namespace

· CommonComplexElements

· CommonSimpleElements

· Datatypes

· Identifier Schemes

· Code Lists

· Attribute Declarations – elementFormDefault=”qualified” attributeFormDefault=”unqualified”

· <!-- ===== Imports ===== -->
· CommonComplexElements XML Schema module(s)
· CommonSimpleElements XML Schema module(s)
· Unqualified Datatypes XML Schema module(s)
· Qualified Datatypes XML Schema module(s)
· Code and Identifier List XML Schema module(s)
· <!-- ===== Global Attributes ===== -->

· Global Attributes and Attribute Groups

· <!-- ===== Root Element ===== -->

· Root Element Declaration

· Root Element Type Definition

· <!-- ===== Element Declarations ===== -->

· alphabetized order

· <!-- ===== Type Definitions ===== -->

· All type definitions segregated by simple and complex as follows

· <!-- ===== Complex Data Element Type Definitions ===== -->

· alphabetized order of Complex Data Element xsd:complexType definitions
· <!-- =====Simple Data Element Type Definitions ===== -->

· alphabetized order of simple data element xsd:complexType definitions
· <!-- ===== Copyright Notice ===== -->

· Required copyright notice.

	[GXS2]
	Federal and Agency XML Schema should provide two normative XML Schemas for each transaction. One XML Schema shall be fully annotated. One XML Schema shall be a run-time XML Schema devoid of documentation.

	[GXS3]
	Built-in xsd:simpleType SHOULD be used wherever possible.

	[GXS4]
	All W3C XML Schema constructs in federal and Agency XML Schema and XML Schema modules MUST contain the following namespace declaration on the xsd XML Schema element: xmlns:xsd="http://www.w3.org/2001/XMLXML Schema"

	[GXS5]
	The xsd:SubstitutionGroups feature Should NOT be used In data centric XML Schema. If used, it should only be used in user defined customization XML Schema or when extending Agency or Federal XSD components.

	[GXS6]
	The xsd:final attribute SHOULD be used where appropriate to control undesireable extensions.

	[GXS7]
	xsd:notations MUST NOT be used.

	[GXS8]
	The xsd:all element MUST NOT be used in data centric XML Schema.

	[GXS9]
	The xsd:choice element SHOULD NOT be used where customisation and extensibility are a concern.

	[GXS10]
	The xsd:include feature MUST only be used within a root XML Schema.

	[GXS11]
	The xsd:union technique MUST NOT be used except for Code and Identifier Lists. The xsd:union technique MAY be used for Code and Identifier Lists.

	[GXS12]
	Federal or Agency XML Schema MUST NOT use xsd:appinfo.

	[GXS13]
	Complex Type extension or restriction MAY be used where appropriate.

	A.12 Instance Document Rules

	[IND1]
	All instance documents MUST validate to a corresponding XML Schema.

	[IND2]
	Instance documents MUST always identify their character encoding with the XML declaration.

	[IND3]
	In conformance with ISO/IETF/ITU/UNCEFACT Memorandum of Understanding Management Group (MOUMG) Resolution 01/08 (MOU/MG01n83), all federal or Agency XML SHOULD be expressed using UTF-8.

	[IND4]
	All instance documents MUST contain the following namespace declaration in the root element: xmlns:xsi="http://www.w3.org/2001/XMLXML Schema-instance"

	[IND5]
	Data centric instance documents MUST NOT contain an element devoid of content or null values.

	[IND6]
	The absence of a construct or data in an instance document MUST NOT carry meaning.

	A.13 Modeling Constraints Rules

	[MDC1]
	Libraries and XML Schemas MUST only use approved datatypes.

	[MDC2]
	Mixed content MUST NOT be used in data centric XML Schema except where contained in an xsd:documentation element.

	A.14 Naming Constraints Rules

	[NMC1]
	Each dictionary entry name MUST define one and only one fully qualified path (FQP) for an element or attribute.

	A.15 Namespace Rules

	[NMS1]
	Every XML Schema module, except internal XML Schema modules, MUST have a namespace declared using the xsd:targetNamespace attribute.

	[NMS2]
	Every defined or used XML Schema set version MUST have its own unique namespace

	[NMS3]
	Federal Namespaces MUST only contain federally developed XML Schema modules

	[NMS4]
	Agency Namespaces MUST only contain agency developed XML Schema modules

	[NMS5]
	The namespace names for XML Schemas holding draft status MUST be of the form:

urn:

	[NMS6]
	The namespace names for XML Schemas holding Approved status MUST be of the form:

urn:

	[NMS7]
	Published namespaces MUST never be changed.

	[NMS8]
	Each Federal and Agency Common Complex Data Elements XML Schema Module MUST reside in its own namespace.

	[NMS9]
	Each Federal and Agency Common Complex Data Elements XML Schema Module MUST be represented by the token "CCD[agencyid][majorversion][minorversion]".

	 [NMS10]
	Each Federal and Agency Common Simple Data Elements XML Schema Module MUST reside in its own namespace.

	[NMS11]
	Each Common Simple Data Elements XML Schema module MUST be represented by the token "csd[agencyid][majorversion][minorversion]".

	 [NMS12]
	Each Federal and Agency Unqualified Datatype XML Schema module MUST reside in its own namespace.

	[NMS13]
	Each Federal and Agency Unqualified Datatype XML Schema module namespace MUST be represented by the token "udt[agencyid][majorversion][minorversion]".

	 [NMS14]
	Each Federal and Agency Qualified Datatypes XML Schema module MUST reside in its own namespace.

	[NMS15]
	Each Federal and Agency Qualified Datatypes XML Schema module namespace MUST be represented by the token "qdt[agencyid][majorversion][minorversion]".

	 [NMS16]
	Each CodeList XML Schema module MUST be maintained in a separate namespace.

	A.16 Root Element Declaration Rules

	[RED1]
	Every instance document must use the global element defined as the root element in the XML Schema as its root element.

	A.17 XML Schema Structure Modularity Rules

	[SSM1]
	Root XML Schema expressions MAY be split into multiple XML Schema modules.

	[SSM2]
	A root XML Schema in one namespace that is dependent upon type definitions or element declarations defined in another namespace MUST only import the root XML Schema from that namespace.

	[SSM3]
	A root XML Schema in one namespace that is dependant upon type definitions or element declarations defined in another namespace MUST NOT import internal XML Schema modules from that namespace.

	[SSM4]
	All imported XML Schema modules MUST be fully conformant with the Federal XML naming and design rules.

	[SSM5]
	XML Schema modules MUST either be treated as external XML Schema modules or as internal XML Schema modules of the root XML Schema.

	[SSM6]
	All internal XML Schema modules MUST be in the same namespace as their corresponding root XML Schema.

	[SSM7]
	Each internal XML Schema module MUST be named ParentXML SchemaModuleName}{InternalXML SchemaModuleFunction}{XML Schema module}

	[SSM8]
	A XML Schema module defining all Federal Common Complex Data Elements MUST be created.

	[SSM9]
	The Federal Common Complex Data Elements XML Schema module MUST be named "fed:Common Complex Data Elements XML Schema Module"

	[SSM10]
	A XML Schema module defining all Federal Common Simple Data Elements MUST be created.

	[SSM11]
	The Federal Common Simple Data Elements XML Schema module MUST be named "fed:CommonSimpleDataElements XML Schema Module"

	[SSM15]
	The Federal Qualified Datatypes XML Schema module MUST be named "fed:Qualified Datatypes XML Schema module"

	 [SSM16]
	Agencies MAY create Agency level XML Schema modules for reusable components not included in Federal level XML Schema. Agencies SHOULD submit all Agency reusable components for consideration as Federal level reusable components.

	 [SSM17]
	A XML Schema module defining Agency Common Complex Data Elements MAY be created.

	[SSM18]
	Agency Common Complex Data Element XML Schema modules MUST be named "<agencyToken>:<AgencyName>
CommonComplexDataElements Schema Module"

	 [SSM19]
	A XML Schema module defining all Agency Common Simple Data Elements MAY be created.

	[SSM20]
	Agency Common Simple Data Elements XML Schema modules MUST be named "fed: <agencyToken>:<AgencyName>
Common Simple Data Elements Schema Module"

	 [SSM21]
	A XML Schema module defining all Agency Unqualified Datatypes MAY be created.

	[SSM22]
	Agency Unqualified Datatype XML Schema modules MUST be named "<agencyToken>:<AgencyName> Unqualified Datatype Schema Module"

	[SSM23]
	A XML Schema module defining all Agency Qualified Datatypes MAY be created.

	[SSM24]
	Agency Qualified Datatypes XML Schema modules MUST be named <agencyToken>:<AgencyName> Qualified Datatypes schema module"

	A.18 Standards Adherence rules

	[STA1]
	All XML Schema design rules MUST be based on the W3C XML Schema Recommendations: XML Schema Part 1: Structures and XML Schema Part 2: Datatypes.

	[STA2]
	All XML Schema and messages MUST be based on the W3C suite of technical specifications holding recommendation status.

	[STA3]
	Proprietary extensions to the W3C specifications MUST never be used.

	A.19 SimpleType Naming Rules

	[STN1]
	Each xsd:simpleType definition name MUST be the datatype dictionary entry name with the separators removed.

	A.20 SimpleType Definition Rules

	[STD1]
	For every datatype whose metadata components map directly onto the properties of a built-in xsd:DataType, the datatype MUST be defined as a named xsd:simpleType in the fed:unqualifiedDatatype XML Schema module.

	A.21 Standards Rquirements Rule

	[STR1]
	To ensure conformance with both statutory and policy requirements contained in Public Law 104-113 and Office of Management and Budget Circular A-119, all Federal XML implementations must adhere to the following hierarchy of standards in creating and using XML

· De jure Voluntary Consensus Standards

· Cross-sector Voluntary Consensus Standards

· Sector specific Voluntary Consensus Standards

· Federal Enterprise Wide Standards

· Agency specific standards

	[STR2]
	Agencies SHOULD create Agency level policy, procedures and guidance to ensure XML is developed and governed at an enterprise level

	[STR3]
	Agencies SHOULD promote Agency level XML components to candidate federal level components and candidate Voluntary Consensus Standards Bodies

	A.22 Versioning Rules

	[VER1]
	Every federal and Agency XML Schema and XML Schema module major version committee draft MUST have a document-id of the form

<name>-<major>.0[.<revision>]

	[VER2]
	Every federal and Agency XML Schema and XML Schema module major version Standard MUST have a document-id of the form

<name>-<major>.0

	[VER3]
	Every minor version XML Schema or XML Schema module draft MUST have a document-id of the form

<name>-<major >.<non-zero>[.<revision>]

	[VER4]
	Every minor version XML Schema or XML Schema module Standard MUST have an document-id of the form

<name>-<major >.<non-zero>

	[VER5]
	For minor version changes, the name of the version construct MUST NOT change.

	[VER6]
	Every XML Schema and XML Schema module major version number MUST be a sequentially assigned, incremental number greater than zero.

	[VER7]
	Every XML Schema and XML Schema module minor version number MUST be a sequentially assigned, incremental non-negative integer.

	[VER8]
	A minor version document XML Schema MUST import its immediately preceding version document XML Schema.

	[VER9]
	XML Schema and XML Schema module minor version changes MUST be limited to the use of xsd:extension or xsd:restriction to optionally alter existing types or add new constructs.

	[VER10]
	XML Schema and XML Schema module minor version changes MUST not break semantic compatibility with prior versions.

Appendix B. Approved Acronyms and Abbreviations

The following Acronyms and Abbreviations have been approved for Federal and Agency use:

· A Dun & Bradstreet Data Universal Numbering System (DUNS) number must appear as "DUNS".
· "Identifier" must appear as "ID".

· "Uniform Resource Identifier" must appear as "URI"

· [Example] the "Uniform Resource. Identifier" portion of the Binary Object. Uniform Resource. Identifier attribute becomes "URI" in the resulting XML name). The use of URI for Uniform Resource Identifier takes precedence over the use of "ID" for "Identifier".

This list will henceforth be maintained by XXX, and additions included in current and future versions will be maintained and published separately.

Appendix C. Metadata Components

Table B-1. Approved Core Component Type Content and Supplementary Components

	Name
	Primitive data-type
	Definition
	Remarks

	Amount Currency. Code List. Identifier
	String
	The Currency Code List being used.
	Reference UN/ECE Rec. 9, using 3-letter alphabetic codes. The UN/ECE Rec. 9 is also published as ISO 4217, but is available in electronic form and free of charge.

	Amount Currency. Code List Version. Identifier
	string
	The Version of the code list.
	

	Amount Currency. Identifier
	string
	The currency of the amount

	The code identifying the currency

	Binary Object. Format. Text
	string
	The format of the binary content.
	

	Binary Object. Mime.Code
	string
	The mime type of the binary object.
	Reference IETF RFC 2045, 2046, 2047

	Binary Object. Character Set. Code
	string
	The character set of the binary object if the mime type is text.
	Reference IETF RFC 2045, 2046, 2047

	Binary Object. Encoding. Code
	string
	Specifies the decoding algorithm of the binary object.
	Reference IETF RFC 2045, 2046, 2047

	Binary Object. Uniform Resource. Identifier
	string
	The Uniform Resource Identifier that identifies where the Binary Object is located.
	

	Binary Object. Filename. Text
	String
	The filename of the binary object.
	Reference IETF RFC 2045, 2046, 2047

	Code List. Agency. Identifier
	string
	An agency that maintains one or more code lists.
	Defaults to the UN/EDIFACT data element 3055 code list.

	Code List. Agency Name. Text
	string
	The name of the agency that maintains the code list.
	

	Code List. Name. Text
	string
	The name of a list of codes.
	

	Code List. Identifier
	string
	The identification of a list of codes
	Can be used to identify the URL of a source that defines the set of currently approved permitted values

	Code List Scheme. Uniform Resource. Identifier
	string
	The Uniform Resource Identifier that identifies where the code list scheme is located.
	

	Code List. Uniform Resource. Identifier
	string
	The Uniform Resource Identifier that identifies where the code list is located.
	

	Code List. Version. Identifier
	string
	The Version of the code list.
	Identifies the Version of the UN/EDIFACT data element 3055 code list.

	Code. Name. Text
	string
	The textual equivalent of the code content
	If no code content exists, the code name can be used on its own

	Date Time. Format. Text
	string
	The format of the date/time content
	Reference ISO 8601 and W3C note on date time

	Identification Scheme Agency. Identifier
	string
	The identification of the agency that maintains the identification scheme.
	Defaults to the UN/EDIFACT data element 3055 code list.

	Identification Scheme Agency. Name. Text
	string
	The name of the agency that maintains the identification scheme
	

	Identification Scheme Data. Uniform Resource. Identifier
	string
	The Uniform Resource Identifier that identifies where the identification scheme data is located
	

	Identification Scheme. Identifier
	string
	The identification of the identification scheme.
	

	Identification Scheme. Name. Text
	string
	The name of the identification scheme.
	

	Identification Scheme. Uniform Resource. Identifier
	string
	The Uniform Resource Identifier that identifies where the identification scheme is located.
	

	Identification Scheme. Version. Identifier
	string
	The Version of the identification scheme.
	Identifies the Version of the UN/EDIFACT data element 3055 code list.

	Indicator. Format. Text
	String
	Whether the indicator is numeric, textual or binary
	

	Language. Identifier
	string
	The identifier of the language used in the corresponding text string
	Reference ISO 639: 1998

	Language. Locale. Identifier
	string
	The identification of the locale of the language.
	

	Measure Unit. Code
	string
	The type of unit of measure
	Reference UN/ECE Rec. 20 and X12 355.

	Measure Unit. Code List Version. Identifier
	string
	The Version of the measure unit code list.
	

	Numeric. Format. Text
	string
	Whether the number is an integer, decimal, real number or percentage
	

	Quantity. Unit. Code
	string
	The unit of the quantity
	May use UN/ECE Rec. 20

	Quantity Unit. Code List Agency. Identifier
	string
	The identification of the agency which maintains the quantity unit code list
	

	Quantity Unit. Code List. Identifier
	string
	The quantity unit code list.
	Defaults to the UN/EDIFACT data element 3055 code list.

	Quantity Unit. Code List Agency Name. Text
	string
	The name of the agency which maintains the quantity unit code list.
	

Appendix D. Permissible Representation Terms

Table C-1. Permissible Representation Terms

	Primary Representation Term
	Definition
	Related
Unqualified Datatype
	Secondary Representation Terms

	Amount
	A number of monetary units specified in a currency where the unit of currency is explicit or implied.
	Amount. Type
	

	Binary Object
	A set of finite-length sequences of binary octets.
[Note: This Representation Term shall also be used for Data Types representing graphics (i.e. diagram, graph, mathematical curves, or similar representation), pictures (i.e. visual representation of a person, object, or scene), sound, video, etc.]
	Binary Object. Type
	Graphic, Picture, Sound, Video

	Code
	A character string (letters, figures or symbols) that for brevity and / or language independence may be used to represent or replace a definitive value or text of a Property.

[Note: The term 'Code' should not be used if the character string identifies an instance of an Object Class or an object in the real world, in which case the Representation Term identifier should be used.]
	Code. Type
	

	Date Time
	A particular point in the progression of time (ISO 8601).

[Note: This Representation Term shall also be used for Data Types only representing a Date or a Time.]
	Date Time. Type
	Date, Time

	Identifier
	A character string used to establish the identity of, and distinguish uniquely, one instance of an object within an identification scheme from all other objects within the same scheme.
	Identifier. Type
	

	Indicator
	A list of exactly two mutually exclusive Boolean values that express the only possible states of a Property.

[Note: Values typically indicate a condition such as on/off; true/false etc.]
	Indicator. Type
	

	Measure
	A numeric value determined by measuring an object. Measures are specified with a unit of measure. The applicable unit of measure is taken from UN/ECE Rec. 20.

[Note: This Representation Term shall also be used for measured coefficients (e.g. m/s).]
	Measure. Type
	

	Numeric

	Numeric information that is assigned or is determined by calculation, counting or sequencing. It does not require a unit of quantity or a unit of measure.

[Note: This Representation Term shall also be used for Data Types representing Ratios (i.e. rates where the two units are not included or where they are the same), Percentages, etc.)
	Numeric. Type
	Value, Rate, Percent

	Quantity
	A counted number of non-monetary units. Quantities need to be specified with a unit of quantity.

[Note: This Representation Term shall also be used for counted coefficients (e.g. flowers/m²).]
	Quantity. Type
	

	Text
	A character string (i.e. a finite set of characters) generally in the form of words of a language.

[Note: This Representation Term shall also be used for names (i.e. word or phrase that constitutes the distinctive designation of a person, place, thing or concept).]
	Text. Type
	Name

Secondary Representation Terms will also be defined as unqualified datatypes.
Appendix E. Technical Terminology

	Ad hoc XML Schema processing
	Doing partial XML Schema processing, but not with official XML Schema validator software; e.g., reading through XML Schema to get the default values out of it.

	Aggregated Data Elements
	A collection of related pieces of data. Expressed in modeling terms, it is the representation of an Object Class, in a specific Business Context.

	Application-level validation
	Adherence to business requirements, such as valid account numbers.

	Assembly
	Using parts of the library of reusable components to create a new kind of business document type.

	Business Context
	Defines a context in which a business has chosen to employ an information entity.

	Business Object
	An unambiguously identified, specified, referenceable, registerable and re-useable scenario or scenario component of a business transaction.
The term business object is used in two distinct but related ways, with slightly different meanings for each usage:

In a business model, business objects describe a business itself, and its business context. The business objects capture business concepts and express an abstract view of the business’s “real world”. The term “modeling business object” is used to designate this usage.

In a design for a software system or in program code, business objects reflects how business concepts are represented in software. The abstraction here reflects the transformation of business ideas into a software realization. The term “systems business objects” is used to designate this usage.

	business semantic(s)
	A precise meaning of words from a business perspective.

	Business Term
	This is a synonym under which a data element is commonly known and used in the business. A data element or data element aggregation may have several business terms or synonyms.

	Class
	A description of a set of objects that share the same attributes, operations, methods, relationships, and semantics. A class may use a set of interfaces to specify collections of operations it provides to its environment. See interface.

	class diagram
	Shows static structure of concepts, types, and classes. Concepts show how users think about the world; types show interfaces of software components; classes show implementation of software components. (OMG Distilled)

A diagram that shows a collection of declarative (static) model elements, such as classes, types, and their contents and relationships. (Rational Unified Process)

	
	

	Common attribute
	 An attribute that has identical meaning on the multiple elements on which it appears. A common attribute might or might not correspond to an XSD global attribute.

	Component
	One of the individual entities contributing to a whole.

	Context
	Defines the circumstances in which a Business Process may be used.

	context category
	A group of one or more related values used to express a characteristic of a business circumstance.

	data centric
	

	data element
	

	De facto Standard
	

	De jure VCS
	

	document centric
	

	Root XML Schema
	A XML Schema document corresponding to a single namespace, which is likely to pull in (by including or importing) XML Schema modules.

	
	

	
	

	Datatype
	A descriptor of a set of values that lack identity and whose operations do not have side effects. Datatypes include primitive pre-defined types and user-definable types. Pre-defined types include numbers, string and time. User-definable types include enumerations. (XSD)

(ISO 11179)

	Generic BIE
	A semantic model that has a “zeroed” context. We are assuming that it covers the requirements of 80% of business uses, and therefore is useful in that state.

	Instance
	An individual entity satisfying the description of a class or type.

	Instance constraint checking
	Additional validation checking of an instance, beyond what XSD makes available, that relies only on constraints describable in terms of the instance and not additional business knowledge; e.g., checking co-occurrence constraints across elements and attributes. Such constraints might be able to be described in terms of XML Schematron.

	
	

	Intermediate element
	 An element not at the top level that is of a complex type, only containing other elements and attributes.

	Internal XML Schema module:
	A XML Schema module that does not declare a target namespace.

	Leaf element
	An element containing only character data (though it may also have attributes). Note that, because of the XSD mechanisms involved, a leaf element that has attributes must be declared as having a complex type, but a leaf element with no attributes may be declared with either a simple type or a complex type.

	Lower-level element
	An element that appears inside a business message. Lower-level elements consist of intermediate and leaf level.

	Object Class
	The logical data grouping (in a logical data model) to which a data element belongs (ISO11179). The Object Class is the part of a simple or complex data elements Dictionary Entry Name that represents an activity or object in a specific Context.

	Namespace XML Schema module:
	A XML Schema module that declares a target namespace and is likely to pull in (by including or importing) XML Schema modules.

	Naming Convention
	The set of rules that together comprise how the dictionary entry name for simple data elements; complex data elements; and XSD elements, attributes and types are constructed.

	(XML) XML Schema
	An XML Schema consists of components such as type definitions and element declarations. These can be used to assess the validity of well-formed element and attribute information items (as defined in [XML-Infoset]), and furthermore may specify augmentations to those items and their descendants.

	XML Schema module
	A collection of XML constructs that together constitute an XSD conformant XML Schema. XML Schema modules are intended to be used in combination with other XSD conformant XML Schema.

	XML Schema Processing
	XML Schema validation checking plus provision of default values and provision of new infoset properties.

	XML Schema Validation
	Adherence to an XSD XML Schema.

	Semantic
	Relating to meaning in language; relating to the connotations of words.

	Top-level element
	 An element that encloses a whole business message. Note that business messages might be carried by messaging transport protocols that themselves have higher-level XML structure. Thus, a top-level element is not necessarily the root element of the XML document that carries it.

	Type
	Description of a set of entities that share common characteristics, relations, attributes, and semantics.

A stereotype of class that is used to specify an area of instances (objects) together with the operations applicable to the objects. A type may not contain any methods. See class, instance. Contrast interface.

	VCS
	Voluntary Consensus Standards are standards developed or adopted by voluntary consensus standards bodies, both domestic and international. These standards include provisions requiring that owners of relevant intellectual property have agreed to make that intellectual property available on a non-discriminatory, royalty-free or reasonable royalty basis to all interested parties. For purposes of this Circular, "technical standards that are developed or adopted by voluntary consensus standard bodies" is an equivalent term.

� http://colab.cim3.net/cgi-bin/wiki.pl?Enterprise_Architecture_Glossary_Of_Terms#nid2PS5 http://en.wikipedia.org/wiki/XML_XML SchemaData Reference Model Wiki http://colab.cim3.net/cgi-bin/wiki.pl?Enterprise_Architecture_Glossary_Of_Terms#nid2PS5

� National Technology Transfer and Advancement Act, Public Law 104-113, March 1996

� Office of Management and Budget, Circular A119,

� ebXML, Core Components Technical Specification – Part 8 of the ebXML Technical Framework, V2.0, 11 August 2003

� http://www.xml.com/pub/a/2001/08/22/uml.html

� http://xml.gov/documents/completed/lmi/GS301L1_namespace.pdf

� http://www.whitehouse.gov/omb/circulars/a119/a119.html#4

DRAFT—Federal XML NDRG—12/12/05
10-2
FEDERAL XML NDRG_20051212.doc
DRAFT—Federal XML NDRG—12/12/05
10-46
FEDERAL XML NDRG_20051212.doc
DRAFT—Federal XML NDRG—12/12/05
3-33
FEDERAL XML NDRG_20051212.doc

_1179453256.vsd
-First Name
-Middle Name
-Last Name
-Birth Date

Person

-Number
-Street Name
-City
-State
-Country Identifier
-Postal Code

Address

0..1

+Mailing

*

_1179820543.vsd
Root Schema Module

Internal Schema Module(s)

1

Agency Supplemental Unqualified DataTypes (ASUDT)  Schema Module

Message Assembly – Single Namespace

External Schema Modules – Individual Namespaces

Federal  Simple Data Elements  Schema Module

Federal Complex Data Elements  Schema Module

Federal Unqualified DataTypes (FUDT)  Schema Module

Federal Qualified DataTypes (FQDT) Schema Module

Source Standards Unqualified DataType Schema Module

Agency Supplemental Qualified DataTypes (ASQDT) Schema Module

Code List (CL)  Schema Module(s)

0..1

1

1

0..*

1

0..1

1

0..*

1

0..*

0..1

0..*

0..1

0..1

0..*

4..*

1

0..*

0..1

1

1

0..*

1

Include

Import

0..*

0..*

0..*

1

1

1

Source Standards Qualified DataType Schema Module

1

0..*

Identifier List (IL)  Schema Module(s)

Agency Complex Data Elements  Schema Module

Agency  Simple Data Elements  Schema Module

0..*

1

1

1

1

0..*

0..*

External Standards Body Reusable Entities Schema Module

Other External Reusable Entities Schema Module

0..*

0..*

Import

Import

Note: relationships between shcema modules in different namespaces are xsd:import

_1191149490.vsd
Root Schema Module

Internal Schema Module(s)

0..*

Message Assembly – Single Namespace

Government and Source Standards Body
Schema

0..*

Include

Import

External Standards Body Reusable Entities Schema Module

Other External Reusable Entities Schema Module

0..*

0..*

Import

Import

_1179453780.vsd
-Person. First Name. Text
-Person. Middle Name. Text
-Person. Last Name. Text
-Person. Birth Date. Date
-Person. Mailing. Address

Person Complex Data Element

-Address. Number. Text
-Address. Street Name. Text
-Address. City. Text
-Address. State. Text
-Address. Country Identification. Identiifier
-Address. Postal Code. Code

Address Complex Data Element

_1178625901.ppt

Object Class

Property

Attribute

(Type)

Entity

(Type)

Data Element (Type)

Representation

Generic Data Element

Data Element

Concept

Entity Relationship Diagram

Data Model

ISO 11179

Data Element Classification Structure

Source: ISO 11179

_1178626082.ppt

Simple XSD Transformation

Object Class

Property

Attribute

(Type)

Entity

(Type)

Global Element/

xsd:complexType

Global Element/

xsd:complexType

Representation

Entity Relationship Diagram

Data Model

ISO 11179

Data Element Classification Structure

xsd:complexType or

xsd:simpleType

Simple XSD Transformation

Object Class

Property

Attribute

(Type)

Entity

(Type)

Global Element/

xsd:complexType

Global Element/

xsd:complexType

Representation

Entity Relationship Diagram

Data Model

ISO 11179

Data Element Classification Structure

xsd:complexType or

xsd:simpleType

